Markets for Agricultural Greenhouse Gas Offsets: The Role of Payment Design on Abatement Efficiency

Cloé Garnache*, Pierre Mérel†, Juhwan Lee† and Johan Six†

* Dept of Agricultural, Food and Resource Economics, Michigan State University † Dept of Environmental Systems Science, ETHZ, Switzerland

June 2013

Growing political will to develop climate policies reducing GHG emissions

- 2009 Copenhagen Accord: "Climate change is one of the greatest challenges of our time" and "deep cuts in global emissions are required" (UNFCC, 2010)
- International agreements: Kyoto agreement, the European Union's Emissions Trading System
- National: Australia, New Zealand
- Subnational agreements: 10 north eastern states (RGGI), CA (AB 32), Québec

Studies show agriculture can cost-effectively abate GHG emissions

- Large abatement potential: carbon sequestration, reduction in N₂O and CH₄ (Lal et al., 1998; Paustian et al., 2006; Smith et al., 2008; Snyder et al., 2009)
- Economic studies conclude agriculture can cost-effectively reduce GHG emissions (McCarl and Schneider, 2001; Pautsch et al., 2001; Antle et al., 2007)

California is one of the leaders in designing climate policy with Assembly Bill (AB) 32 (Burtraw, 2013)

- Mandate: cap the state's 2020 emissions (507Mt under BAU) to their 1990 levels (427Mt)
- Estimated 62Mt will be abated from standards (e.g., low carbon fuel standards, energy efficiency, 33% renewable energy in electricity generation)
- Estimated 18Mt will be abated from cap-and-trade
- ARB is reviewing the development of protocols to credit GHG offsets from agriculture (protocols already exist for forestry and biodigesters)

Research questions

- What is California's agriculture marginal abatement cost curve?
- How much abatement efficiency loss arises from second-best policies relative to the first-best?
 - Payments with aggregated emission factors
 - at the Sacramento and San Joaquin Valley-level
 - at the California-level
 - Payments targeting a single GHG
 - N₂O
 - CO₂
 - Payments monitoring a single input
 - N fertilizer (in \$/kg of N)
 - irrigation water (in \$/m³)
 - tillage (in \$/tillage index)

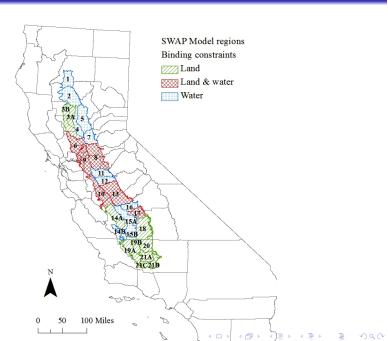
The application: California Central Valley's agriculture

- 7 crops (covering 70% of the non-perennial acreage)
- Simultaneous and continuous changes in
 - N fertilizer application rate
 - water application rate
 - tillage practices
- Crop substitution effects
- All three GHGs: N₂O, CO₂, CH₄

Results overview

Second-best policy	Abatement losses relative to first-best
Valley-level aggregated factors	small
State-level aggregated factors	small
Regulating CO ₂ only	medium
Regulating N ₂ O only	medium
Regulating tillage only	medium
Regulating N only	large
Regulating water only	large

The economic and biophysical models


- The economic model
 - Positive mathematical programming
 - CES production functions with decreasing returns-to-scale
 - Calibrated to input-output crop allocation
 - Calibrated to exogenous own-price supply elasticities
- The biophysical model, Daycent
 - Process-based model
 - Calibrated to California conditions

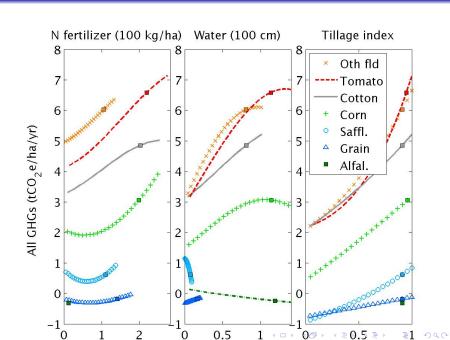
Linking the economic and biophysical models

- The biophysical model simulates yield and GHG data
 - ullet GHG emission responses o feed into the economic model
 - yield responses integrated into the economic model

- The CES production function is consistent with
 - economic data: reference allocation and supply elasticity
 - agronomic information at the margin

California's Central Valley 27 regions

Crop acreage distribution across the Central Valley (%)

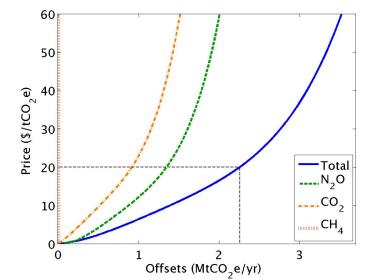

Crop	Central Valley	Sacramento Valley	San Joaquin Valley
Alfalfa	22	24	19
Corn	21	22	21
Cotton	21	1	28
Grain	12	21	9
Other field cr.	14	9	16
Proc. tomato	10	18	7
Safflower	2	6	0
Total	100	100	100

Constructing the tillage index T

• Six tillage practices identified in California (Mitchell et al., 2009)

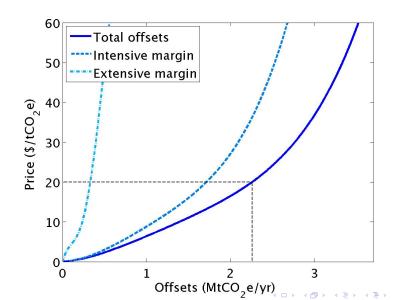
Practice	Description	Residue	Chisel,	T
		cover	subsoil	
Conv. tillage	high soil disturbance	none	yes	1
CA conv. tillage	medium soil disturbance	none	yes	0.91
Reduced tillage	tractor passes cut by 25%	15-30%	no	0.64
Mulch tillage	tractor passes cut by 75%	>33%	no	0.54
Strip tillage	only seed row is tilled	>30%	no	0.41
No till	disturb. only at planting	>30%	no	0

 Extrapolate T from the 6 data points: T continuous on the interval [0, 1]

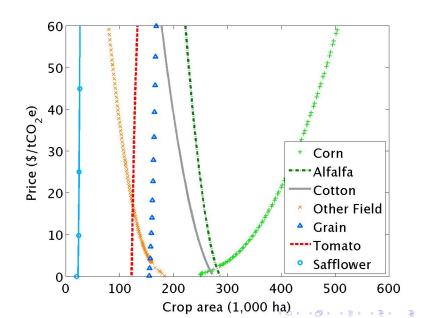

Model specification under the first-best policy

$$\max_{x_{ij} \geq 0, T_i \geq 0} \sum_{i} \left(p_i q_i - \sum_{j} \left(c_{ij} + \lambda_{ij} \right) x_{ij} - \left(c_{iT} + \lambda_{iT} T_i \right) x_{i1} - t \sum_{k} E_{ik} x_{i1} \right)$$

subject to

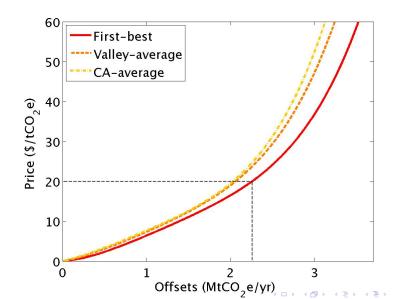

$$\begin{cases} \sum_{i} x_{ij} \leq v_{j} & j = 1, 2 \\ q_{i} = \mu_{i} \gamma_{i} \left(\sum_{j} \beta_{ij} x_{ij}^{\rho_{i}} \right)^{\frac{\delta_{i}}{\rho_{i}}} & \forall i \in I \\ E_{ik} = f_{ik}(a_{ij}, T_{i}) & \forall i \in I \text{ and } k = \text{CO}_{2}, \text{N}_{2}\text{O}, \text{CH}_{4} \end{cases}$$

California's agriculture offset supply curve (first-best policy)

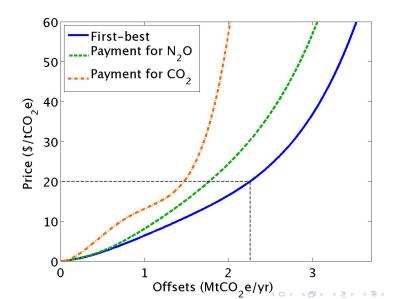


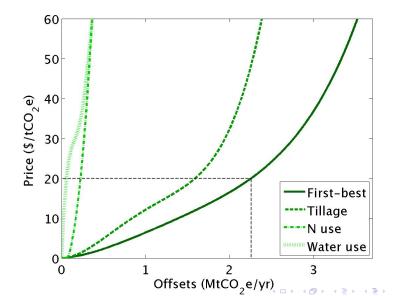
Adjustments at both the intensive and extensive margins contribute substantially to total abatement

Large crop substitution effects, including corn acreage expansion


Crop average emission rates in the baseline and net changes at a price of \$20/tCO₂e

	Sacramer	nto Valley	San Joaquin Valley	
Crop	Baseline	Δ GWP	Baseline	Δ GWP
Alfalfa	-0.3	0.0	4.3	-0.8
Corn	3.0	-2.5	1.5	-2.0
Cotton	3.8	-0.4	5.0	-1.3
Grain	-0.1	-0.1	-0.3	0.0
Other field cr.	5.7	-2.2	4.3	-1.5
Proc. tomato	6.6	-2.7	6.7	-3.1
Safflower	1.0	-2.0	0.0	-0.3
Weighted average	2.3	-1.4	3.7	-1.8


Crop average production practices and acreages in the baseline and net changes at a price of \$20/tCO₂e


	Area	(10 ³ ha)	Wate	r (cm)	N (k	g/ha)	Tillage	e index
Crop	\bar{x}_1	Δx_1	\bar{a}_2	Δa_2	\bar{a}_3	Δa_3	\bar{T}	ΔT
Alfalfa	283	-29	125	10	10	-	0.91	-
Corn	271	125	121	-29	218	-58	0.96	-0.78
Cotton	269	-42	79	6	201	-27	0.91	-0.29
Grain	146	-4	37	2	202	13	0.91	-0.07
Oth field cr	176	-56	83	10	105	-59	0.91	-0.29
Pr. tomato	122	3	112	-4	218	-26	0.95	-0.32
Safflower	20	-3	16	4	113	7	0.91	-0.73

Second-best policies using aggregated emission factors perform well relative to the first-best Aggreg. emission factors Pegions Simple average

Second-best policies targeting a single GHG lead to substantial abatement efficiency losses

Abatement efficiency losses under second-best policies relative to the first-best at \$20/tCO₂e

Second-best policy	Abatement loss relative to first-best
Valley-level aggregated factors	≈ 9%
State-level aggregated factors	$\approx 10\%$
Regulating CO ₂ only	≈ 31%
Regulating N ₂ O only	pprox 21%
Regulating tillage only	≈ 30%
Regulating N only	pprox 90%
Regulating water only	pprox 95%

Conclusion

- California agriculture's abatement: \approx 2.3MtCO $_2$ e/year at \$20/tCO $_2$ e
- First study that systematically quantify deadweight loss from implementing second-best policies
- Limitations
 - Estimate of economic abatement potential (mandatory participation, no transaction costs)
 - Assume biophysical model predicts GHG with certainty.

References

- Antle, J. M., Capalbo, S., Paustian, K., and Ali, M. K. (2007). Estimating the economic potential for agricultural soil carbon sequestration in the Central United States using an aggregate econometric-process model. *Climatic Change*, 80:145–171.
- Burtraw, D. (2013). Informational and oversight hearing of the California Senate Select Committee on climate change and AB 32 implementation. Congressional testimony, Resources for the Future, Washington.
- Lal, R., Kimble, L., Follett, R., and Cole, C. (1998). The Potential of U.S. Cropland to Sequester C and Mitigate the Greenhouse Effect. Ann Arbor Press, Chelsea, Ml.
- McCarl, B. A. and Schneider, U. A. (2001). Greenhouse gas mitigation in U.S. agriculture and forestry. Science, 294(5551):2481–2482.
- Mitchell, J., Pettygrove, G., and Upadhyaya, S. (2009). Classification of Conservation Tillage Practices in California Irrigated Row Crop Systems. Technical Report 8364, UC ANR, Oakland, CA.
- Paustian, K., Antle, J. M., Sheehan, J., and Paul, E. A. (2006). Agriculture's role in greenhouse gas mitigation. Pew Center on Global Climate Change, New York.
- Pautsch, G., Kurkalova, L., Babcock, B. A., and Kling, C. (2001). The efficiency of sequestering carbon in agricultural soils. Contemporary Economic Policy, 19(2):123–134.
- Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O'Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., Towprayoon, S., Wattenbach, M., and Smith, J. (2008). Greenhouse gas mitigation in agriculture. *Philosophical Transactions of the Royal Society B*, 363(1492):789–813.
- Snyder, C., Bruulsema, T., Jensen, T., and Fixen, P. (2009). Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems and Environment, 133:247–266.
- UNFCC (2010). Report of the Conference of the Parties on its fifteenth session, held in Copenhagen from 7 to 19 December 2009. Technical Report FCCC/CP/2009/11/Add.1, United Nations Framework Convention on Climate Change.