



Will Brinton, Ph.D. Director and Founder
Woods End Farm & Laboratories — Research Farm (above)

### Humus biology left out from the start

"There is not a shadow of proof that humus exerts any influence on the growth of plants ... Humus in soil does not yield the smallest nourishment to plants...

This belief has deprived us of our best guide to rational agriculture".



□ J. v. Liebig, 1852





# We are presently in the 4<sup>th</sup> Phase of Renewing Interest in Soil Biology

Post War pre-Pre-War Post-Liebig current Soil CO2 CO<sub>2</sub> Nutrition, Soil Biology-Atmosphere Microbial Fertility **Environment** Koepf\* DE (1953) Isermeyer DE (1950) Golovko\* RU 1965 Lundegårdh SE (1924)Birch KE (1958) Hilger FR (1963) Wollny DE (1886), Jäggi CH (1976) Sewerin DE (1904)) Stoklasa CK (1905) Waksman NJ (1923) Pettersson\* SE (1970) Gainey KS (1919) Rusch\* CH (1968) Potter IA (1916) Dlouhy SE 1980 **Russell UK (1915)** 

YQDA







# Liebig's legacy is a narrow-focus on fertilizers, as already warned:

"The direct action of fertilizers on increasing plant growth is the only one that attention is being paid to in agriculture."

Henrik Lundegårdh, Sweden

April 5 1926 in: Soil. Sci. Vol xxiii





# Therefore soil health testing MUST build a bridge from NPK to biology

- Woods End Labs initiated first comprehensive soil test in 1984 combining soil biology with physical traits AND chemistry
- Updated in 2005 in CRADA project with USDA ARS to implement cost-effective measures capable of being implemented in modern soil labs
- Goal is to "not leave farmers out" in access to soil biology on the largest scale possible





### Lundegårdh's Model: The Whole Soil

(Plant Assimilatory CO2 Demand) – (Soil CO2 + Root CO2 Respiratory Supply) =  $Q_{CO2}$ 

#### CO2 CYCLES from soil to plant



- The Swedes brought major attention to the role of soil biology in furnishing plants with assimilatory CO2
- Brinton later studied in Sweden under Pettersson & Dlouhy (1977-79) where this theme continued in whole-system soil biology studies

### Consider Crop CO<sub>2</sub> Requirements

(calculated for 60 day assimilatory period)

Wheat\* ( $\sim 5 \text{ Mg DM/ha}$ ) = 124 kg CO2 demand per day

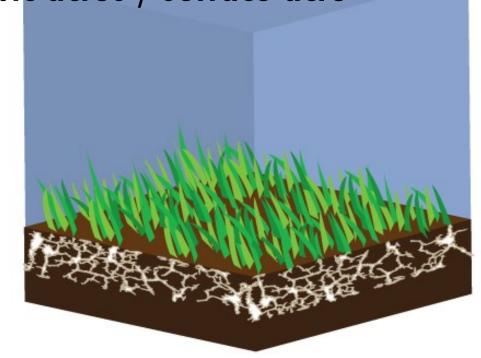
Maize§ (15 Mg DM) = 461 kg CO2 / day

WHERE DOES ALL THE CO2 COME FROM?



- •Lundegårdh studied wheat, oats and beet carbon assimilation
- •§ calculated by Brinton (2014)






# Without soil respiration, a huge mass of air must supply crop CO<sub>2</sub> needs.

Wheat — 10 cubic acres / surface acre
Corn — 38 cubic acres / surface acre

#### **EXAMPLE:**

1,000 acres of wheat requires 10,000 cubic acres of air to supply sufficient CO2







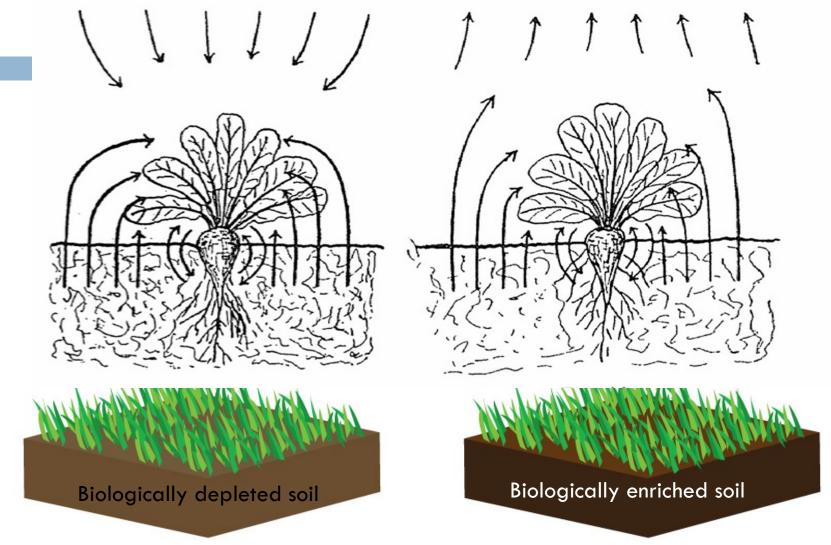

### Lundegårdh's "Rich Soil/Poor Soil" Model:

A biologically-poor soil does not provide adequate CO2 but a humus rich and biologically active soil can

Low-Fertile Soil: CO<sub>2</sub> yield 30 kg/ha/day Humus Rich Soil: CO<sub>2</sub> Yield 125 kg/ha/day



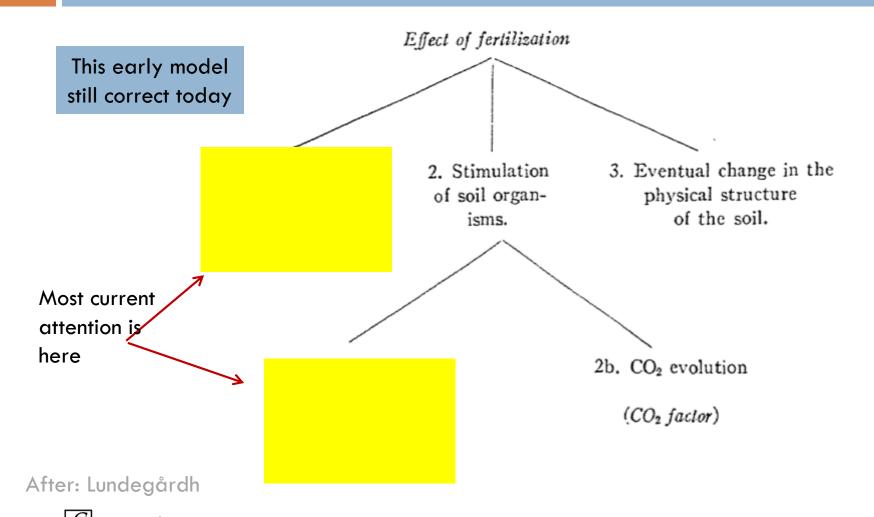
Plants must get most their CO2 from <u>air</u>




Plants obtain all their CO2 from soil






### CO2 Diffusion Gradient: Two Cases







# The Original Swedish Map of Soil Nutrient & Health (from 1926)





### Seeing it with Solvita; a soil life test



Basal Respiration Mode shown; Labs use CO2-Burst Mode based on Haney and Franzluebbers

- Solvita developed by
   Woods End to make CO2
   visual in manner that
   could also be quantified
- No fussy chemistry and can be used in lab and field. Listed in ALP and NAPT
- 100,000 farm soils tested worldwide 2010-2013





## Soil (left) provides 60 kg/ha/day CO<sub>2</sub> but poorer soil (right) yields only 19 kg/ha







#### Soil Health Tool Test

#### Historical Sketch

#### Woods End Labs Soil Testing and SHT

- 1) 1975 "Soil Audit" with humus test
- 2) 1984 N-mineralization added
- 3) 1989 implemented aggregate stability procedure and 7-day CO2-Respiration
- 4) 1996 Solvita® Basal-respiration developed
- 5) 2005-2010 Standardized CO2-Burst test AND
- adopted new "green chemistry" (Haney extract -H3A)
- 6) 2014 Four Commercial soil labs offer SHT\*





## Soil <u>Nutrient</u> & Health Test

#### **OVERVIEW**

Integrates all tests

- -A: Nutrients and org. C N
- -B: Calculated availability
- factors and balances
- -C: Biological Tests and
- **Overall Scoring**
- -D: Recommendations

Designed for modern soil labs



Innovative Soil Testing since 1975

290 Belgrade Road P.O. Box 297 Mount Vernon, ME 04352 207 293 2457 for more information: lab@woodsend.org

#### **SOIL HEALTH TOOL RESULTS**

Performed with USDA-ARS H3A Extraction Method

| For:                                                                                                                                                                  |                            |                                                       |             |                                          |         |                                                |                             |                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------|-------------|------------------------------------------|---------|------------------------------------------------|-----------------------------|--------------------|
|                                                                                                                                                                       |                            |                                                       | 1           |                                          | Lab ID: | 5612.0 Acct No                                 | : 1000                      |                    |
| John Doe                                                                                                                                                              |                            |                                                       |             |                                          | Sample: | Soil: Plo                                      | t_E-L01                     |                    |
| 122 Maine Street                                                                                                                                                      |                            |                                                       |             |                                          | 0       | I- D                                           |                             | 0400               |
| A                                                                                                                                                                     |                            | 10001                                                 |             |                                          |         | le Received: 5/3/2014<br>Report Date: 5/6/2014 |                             | QAQC:              |
| Anytown, PA                                                                                                                                                           |                            | 18801                                                 |             |                                          |         | op Intended: Corn-150                          |                             |                    |
|                                                                                                                                                                       |                            |                                                       |             |                                          | Cr      | op intended: Corn-150                          |                             | $\overline{}$      |
|                                                                                                                                                                       |                            |                                                       | Level       | $\rightarrow$                            | · /     |                                                | C                           | \                  |
| Tested Factors                                                                                                                                                        |                            | UNITS                                                 | Found       | Rating                                   | \ /     | Test Interpretations                           |                             | Rating             |
| * Mitrate-N                                                                                                                                                           | NO <sub>3</sub> -N         | lb/a §                                                | 47.4        | М                                        | `       | Soil Health Score                              | 11.7                        | М                  |
| * Ammonium-N                                                                                                                                                          | NH <sub>4</sub> -N         | lb/a                                                  | 12.0        | M                                        | - //    | Soil Fleatill Scole                            | 11.7                        | IVI                |
| WEOC                                                                                                                                                                  | A                          | C-ppm                                                 | 209         | ML                                       | *       | Organic C:N Ratio                              | 10.3                        | м                  |
| WEON                                                                                                                                                                  | Α                          | N-ppm                                                 | 20.3        | L                                        | l l     | Organic C.N Natio                              | 10.5                        | IVI                |
| SLAN Amino-N                                                                                                                                                          |                            | N-ppm                                                 | 128         | ML                                       | *       | Solvita CO <sub>2</sub> -Burst ppn             | 78.4                        | М                  |
| Phosphate (P <sup>-</sup> )                                                                                                                                           | Р                          | lb/a                                                  | 16          | ML                                       | Λ       | Microbially Active                             | 200/                        |                    |
| Potassium                                                                                                                                                             | K+                         | lb/a                                                  | 156         | MH                                       | ノヾ      | Carbon- "MAC"                                  | 38%                         | MH                 |
| * Calcium                                                                                                                                                             | Ca++                       | lb/a                                                  | 672         | VL                                       |         | Micro Aggregate                                | 2004                        |                    |
| * Ikon                                                                                                                                                                | Fe++                       | ppm                                                   | 104         | M                                        |         | Stability                                      | 38%                         | M                  |
| * Aluminum                                                                                                                                                            | AI 3+                      | ppm                                                   | 234         | Μ _                                      |         |                                                | •                           |                    |
| Availability Factors                                                                                                                                                  | US                         | DA-ARS (Min)                                          | + Climate   |                                          | -10     | Nitrogen S                                     | inecies                     |                    |
| Nitrogen (M-min+Ava                                                                                                                                                   | il) lb/a                   | 101                                                   | 162         | Н                                        |         | Minogen                                        | pecies                      |                    |
| Phosphorus P <sub>2</sub> O <sub>5</sub>                                                                                                                              | lb/a                       | -                                                     | 37          | M                                        |         | 20                                             |                             |                    |
| Potassium K₂O                                                                                                                                                         | lb/a                       | _                                                     | 187         | МН                                       | $\sim$  |                                                | ■ WE                        | ON                 |
| § lb/a÷2 = ppm                                                                                                                                                        | 1107 C                     | D                                                     | 107         |                                          |         |                                                | 24                          |                    |
| § ID/a÷2 = ppm<br>Indicator Factors                                                                                                                                   |                            | В                                                     |             |                                          | )       |                                                | ■ NO:                       | 3-N                |
|                                                                                                                                                                       |                            |                                                       |             |                                          |         |                                                | 6                           |                    |
| P-Saturation                                                                                                                                                          |                            | P/(Al + Fe)                                           | 2.4         | L                                        | - 1     | 128                                            | ■ NH4                       | 4-N                |
| <ul> <li>Fe+Al (acidity indicate)</li> </ul>                                                                                                                          | cator)                     | mg / kg                                               | 338         | L                                        | /       |                                                | ■ Am                        | ino-N              |
| <ul> <li>Calcium Saturation</li> </ul>                                                                                                                                | 1                          | Ca/(Fe+AI)                                            | 1.0         | M                                        |         |                                                | - 4111                      |                    |
|                                                                                                                                                                       |                            |                                                       |             |                                          |         |                                                |                             |                    |
|                                                                                                                                                                       |                            |                                                       |             |                                          |         |                                                |                             |                    |
| Optional Tests (not pa                                                                                                                                                | art of Soil F              | lealth Nutrient                                       | t Tool)     |                                          | Cal     | cium vs Acid Cations                           | Microbia                    | l Carbon           |
| Optional Tests (not pa                                                                                                                                                | irt of Soil F              | Health Nutrient                                       | t Tool)     | no test                                  | Cal     | cium vs Acid Cations                           | Microbia                    | l Carbon           |
|                                                                                                                                                                       | art of Soil I              |                                                       | t Tool)     | no test<br>no test                       | Cal     | Icium vs Acid Cations                          | Microbia                    |                    |
| Soil Organic Matter                                                                                                                                                   | art of Soil I              | LOI %                                                 | t Tool)     |                                          | Cal     | ■ Ca++                                         | Microbia                    | I Carbon<br>■ WSOC |
| Soil Organic Matter<br>pH in Water                                                                                                                                    | art of Soil I              | LOI %<br>units                                        | t Tool)     | no test                                  | Cal     |                                                | Microbia                    |                    |
| Soil Organic Matter<br>pH in Water<br>Magnesium                                                                                                                       | art of Soil I              | LOI %<br>units<br>lb/a                                | t Tool)     | no test<br>no test                       | Cal     | ■ Ca++                                         | Microbia                    | ■wsoc              |
| Soil Organic Matter<br>pH in Water<br>Magnesium<br>Basal CO <sub>2</sub> -C                                                                                           |                            | LOI %<br>units<br>Ib/a<br>ppm<br>cmol/kg              | ·           | no test<br>no test<br>no test<br>no test | Cal     | ■ Ca++<br>■ Al+++                              | Microbia                    | ■wsoc              |
| Soil Organic Matter<br>pH in Water<br>Magnesium<br>Basal CO <sub>2</sub> -C<br>Est. CEC                                                                               |                            | LOI %<br>units<br>Ib/a<br>ppm<br>cmol/kg              | ·           | no test<br>no test<br>no test<br>no test | Cal     | ■ Ca++<br>■ Al+++                              |                             | ■ WSOC<br>■ CO2-C  |
| Soil Organic Matter<br>pH in Water<br>Magnesium<br>Basal CO <sub>2</sub> -C<br>Est. CEC<br>Nutrient Calculate                                                         | <b>ions, Val</b><br>/ acre | LOI % units Ib/a ppm cmoi/kg  ue as \$/acre \$ 183.86 | ·           | no test<br>no test<br>no test<br>no test | D       | ■ Ca++<br>■ Al+++<br>■ Fe+++                   | ecommend                    | WSOC CO2-C         |
| Soil Organic Matter<br>pH in Water<br>Magnesium<br>Basal CO <sub>2</sub> -C<br>Est. CEC<br>Nutrient Calculate<br>N + P <sub>2</sub> O <sub>5</sub> + K <sub>2</sub> O | <b>ions, Val</b><br>/ acre | LOI % units Ib/a ppm cmot/kg                          | e available | no test<br>no test<br>no test<br>no test | D       | Ca++ Al+++ Fe+++  USDA Cover Crop Re           | ecommend<br>ealth Score of: | ■ WSOC<br>■ CO2-C  |



USDA Climate Zone Used for this report: 6a Note Ib/acre = ppm x 2 at 6" depth

Soil Health Test Traits Ratings: VL= V. Low L=Low, M= Moderate MH= Medium High H= High VH= Very High

Methods: Soil Test Procedures for the NE USA \* Bulletin #493, Univ of Delaware; Soil Health Tool, USDA-ARS Temple TX; VT Aluminum Index All nutrients in Soil Health Tool Extract (H3A), optional SOM by LOT @360°C; \*\*Est. CEC = Al+Ca+Mg+K



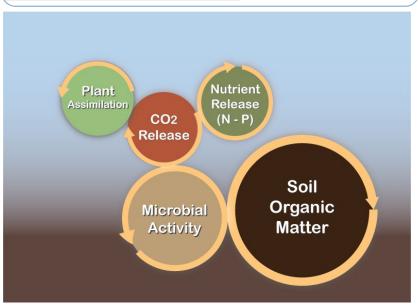
## Soil Biology Conclusion

- Early work shows that plants may suffer temporary CO2 deficiencies at peak growth.
- 2. The same early work identified the proper role of healthy soil as furnishing CO2 for assimilation!
- 3. Mentioned early-on then overlooked is that soil CO2 as dissolved carbonic acid (1-3% CO2 in soil atmosphere!) could act as universal extractant of minerals for plant use.
- Modern approaches tend to overlook these traits and presently there is concern about over-parameterizing soil health into an array of separate procedures.





## Soil Test Chemistry: Lessons Learned


- Soil lab integration is crucial worldwide; 50% of soil labs still take no account of various N sources.
- Woods End Labs and Haney-ARS partner labs taking lead in outreach to soil lab/ farming sectors
- Excessive fertilization is common-but why?
  - A) test methods & nutrient models used by soil labs?
  - B) industry (fertilizer) salesmanship?
  - C) ROI realities (crop value vs/ fertilizer cost)?
- Farmer response very positive for Soil Health Tool.





#### Contacts ...





- Solvita available from SOLVITA.COM
- Soil Health Tool Test available from:
   Woods End Labs ME (WOODSEND.ORG)
   and other labs

(lab@woodsend.org)



