## SESSION FIVE: WHERE WILL WE FARM IN THE FUTURE?

## **Round Table Meeting June 2023 Please remember to follow Chatham House Rule.**





## Moderator Sylvia Wulf CEO

## AquaBounty Technologies, Inc.



# AquaBounty

### Farm Foundation Roundtable

AquaBounty Technologies, Inc. NASDAQ: AQB June 2023

## **AquaBounty: Leaders in Aquaculture and Biotechnology**

|                                                                                                                                                |                                                                           |      | Key Milestones                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------|
| Company Profile                                                                                                                                |                                                                           | 1989 | First genetically engineered ("GE") Atlantic salmon line created                       |
| Headquarters:<br>Total Employees:<br>RAS Farms:                                                                                                | Maynard, MA<br>110<br>Albany, Indiana and<br>Prince Edward Island, Canada | 1995 | Regulatory approval process begins for GE salmon                                       |
|                                                                                                                                                |                                                                           | 2015 | U.S. Food and Drug Administration ("FDA") approves GE salmon for consumption in the US |
|                                                                                                                                                |                                                                           | 2016 | Health Canada approves GE salmon for consumption in Canada                             |
| <ul> <li>Committed to feeding a growing world with land-based salmon;<br/>farmed <i>efficiently, sustainably and profitably</i></li> </ul>     |                                                                           | 2017 | AquaBounty purchases Indiana Farm                                                      |
| <ul> <li>Pioneers in land-based aquaculture, using proprietary technology<br/>to deliver game changing solutions to global problems</li> </ul> |                                                                           | 2018 | Conventional salmon eggs enter Indiana farm hatchery                                   |
| <ul> <li>Blazed the trail for genetically engineered animal protein;<br/>overcoming political, regulatory and perceptual hurdles</li> </ul>    |                                                                           | 2019 | GE salmon eggs enter Indiana farm hatchery                                             |
|                                                                                                                                                |                                                                           | 2020 | First conventional salmon harvested in June                                            |

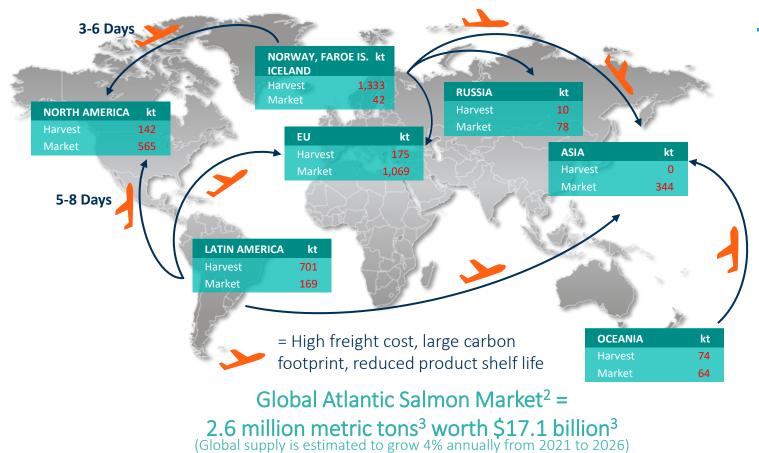
- Significantly increasing profitability for salmon farming in landbased Recirculating Aquaculture Systems ("RAS")
- Leveraging 25+ years of operational experience with RAS to produce efficiently and ensure success of new farming methods

## 2020 First GE salmon harvested in May 2021 Selected Pioneer, OH for first large-scale farm Regulatory approval for GE salmon granted in Brazil in June 2022 Broke ground on Farm 3 site in Pioneer, Ohio

#### AquaBounty.com

## What Differentiates AquaBounty?

## AquaBounty has four core competencies that provide us with a competitive advantage over other forms of aquaculture


- Proprietary GE Atlantic salmon that grows to harvest size faster while consuming less feed providing greater output while consuming less feed versus conventional Atlantic salmon.
- Land-based RAS experience operating farms for over 25 raising Atlantic salmon to maturity by controlling and optimizing their living environment for their general health and productivity
- Vertical integration managing our own Broodstock and egg production with proprietary genetics. Also supplying nontransgenic eggs from our bio-secure pathogen free facility
- Research and development with expertise in biology, chemistry and RAS operations enabling us to continuously focus on improving the breeding, genetics and health of our fish and improving the efficiency of our farm



#### AquaBounty.com

## Atlantic Salmon – Large Market With Inefficient Supply Chain

#### Land-Based RAS Farming Has Potential to Disrupt The Industry



1. Salmon Nutrition: Everything You Need To Know About Salmon – NFI, July 1, 2019. A Guide To Eating Seafood During Pregnancy – Dish On Fish, April 25, 2019

#### AquaBounty.com

2. Kontali Analyse - Mowi Handbook 2021 3. FAO Statistical Data Search May 11, 2021 4. Undercurrent News (August 30, 2021): US Atlantic Salmon Market in Midst of Unprecedented Rebound 5. IBISWorld "Fish & Seafood Aquaculture in the US" April 2021

#### **Market Dynamics**

#### Demand Drivers:

- Salmon is widely known to be healthy & nutritious<sup>1</sup>
- Growing population and rising middle class, bringing an increased demand for healthy protein
- COVID-19 drove demand for salmon for at home. preparation
- Per capita consumption of seafood has increased at an annualized rate of 1.3% over the last five years<sup>5</sup>

#### Inefficient Supply Chain:

- Current sea-cage operations are highly dependent onair freight
- Supply is constrained in production locations for environmental & regulatory issues related to production methods

### AquaBounty's GE Salmon: Better for the Environment. More for Consumers.

#### Enhanced Benefits of Controlled Operations Compared To Sea-Cage Farming

#### **Faster Growth**

Critical during most vulnerable stages of fish lifecycle

#### Lower Carbon Footprint

Greater than 95% water recycled and reduced transportation to consumption

#### Aquaponics / Hydroponics

Efficient use of resources and waste utilization as agriculture fertilizer

# Image: contract of the second of the secon

#### Less Feed Used

25% improvement in Feed Conversion Rate (FCR)<sup>1</sup>

#### **Biosecurity**

Designed to prevent escapement and impacts on broader ecosystem

 Effects of combined 'all-fish' growth hormone transgenics and triploidy on growth and nutrient utilization of Atlantic salmon (Salmo salar L.) fed a practical grower diet of known composition – Elsevier, May 24, 2013

#### AquaBounty.com

#### No Chemicals or Antibiotics

Reduced risk of infections commonly seen in sea-cage farming

#### **Customer Value Proposition**

Pricing strategy aligned to market rates with potential to raise prices upon production of Superior Grade salmon

## AquaBounty in Pioneer, Ohio

#### Preliminary Rendition of Pioneer Farm





#### Site Overview

- Estimated Square Footage: 479,000 sq. ft.
- Expected to create 100+ jobs
- Expected Construction Completion: Q2 2025



#### AquaBounty.com



Accelerating people & ideas since 1933



## **David Nothmann**

## Investor, Board Member and CxO Multiple Ag Related Entities



## Farm Foundation

David Nothma<mark>nn</mark> June 2023



## What is CEA?

CEA or Controlled Environment Agriculture is farming within partially or fully artificially controlled environments



#### Greenhouse

The most common and commercially viable form of CEA utilized around the world that leverages sunlight.



#### **Vertical Farming**

Purely indoor growing where every variable of a crop's input is controlled, and sunlight is replicated by electricity.



#### Hybrid

State-of-the-art hybrid facilities that fully leverage the bountiful energy of our Sun and the scalability and land optimizations of Vertical Farming.

## Why CEA?

Traditional farming is facing several increasingly urgent problems creating opportunities to deliver sustainable innovations.

#### **CEA** Can Deliver

- Chemical free foods
- Locally produced
- With 95% less water
- On 1% of the land footprint
- Predictable, year-round yields
- Reduced emissions



#### Increasing Demand

- The world is expected to feed **2 billion more people** in the next 30 years
- Affluence & urbanization will drive increased demand for fresh foods in cities and urban areas

#### Health

- - Better availability of healthy foods is a key pillar to tackling the obesity and diabetes epidemics
  - Increasing concerns about pesticide residues and their impact on human health



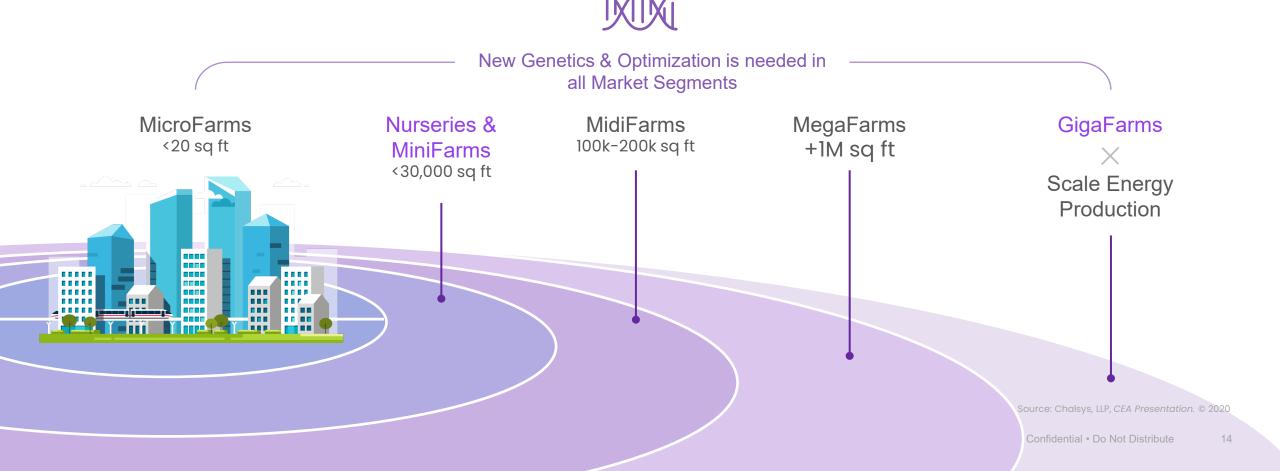
#### **Resource Constraints**

- Fresh water availability is challenged by population growth and climate change
- Arable land is being rapidly eroded by current industrial farming techniques



#### Supply Chain

- 1.3 billion tons of edible food lost globally each year [source: FAO]
- Current geopolitical situation and recent supply chain shocks have built political pressure for greater food supply self-reliance


Source: Chalsys Impact, LLC, CEA Presentation.  $\ensuremath{\textcircled{\sc c}}$  2020

## **Market Overview**

Market opportunity segmentation in VF/CEA will map concentrically against geography and population density.

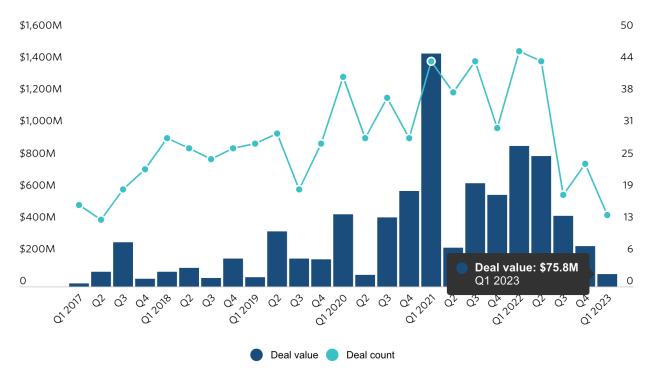
#### There are 3 large white space opportunities:

Nursery/MiniFarms; GigaFarms and Genetics – which will be valuable across all segments.



## The Reality of Vertical Farming: we've entered the "Trough of Disillusionment"

#### A Limited Solution


Apart from leafy greens and very niche markets, current technology is not capable of growing a nutritionally complete meal and we are not addressing some core operational issues.



Bankruptcies, Restructuring, Reductions in Force (RIFs), Consolidation

## (Expensive) Money is Drying Up

VC funding of indoor farms is on track for its lowest annual total in five years



Opportunity remains for the <u>right</u> business model(s)

- Cash Flow and Profitability Focus
- Right Tech Right Time
- Emphasis on Real Value Drivers
  - Collaborative Approaches
  - **Diversification of Funding Sources**

Source: PitchBook Data

## **Addressing Vertical Farming Needs**

Opportunities to bridge the genetics and data gap for the Vertical Farming industry



#### Superior Germplasm

Deliver a consistent supply of high value, quality-controlled, and diverse germplasm to vertical farm operators across the globe



#### Agronomics

Develop purpose-built varieties to meet the unique operational challenges and opportunities of the vertical farm environment



#### Computational Biology Platform

With scale collection and processing on plant data, create "digital twins" of plant varieties enabling predictive digital breeding.



## Summary



# Agriculture Value Chain

#### White Spaces for Innovation

CEA still has a great deal of white space available to innovate and build value

#### Innovation by Collaboration

- In this value chain, automation and innovation will come from collaboration as opposed to promoting a singular technology
- Data flows will have to be substantial, and shared, in order for agriculture as a whole to benefit.

#### Rebuilding the Value Chain

- Disruption comes from breaking up the traditional value chain, recreating and then re-integrating the component parts
- The major innovators had several tries at business models before they succeeded. CEA will be the same.

Confidential • Do Not Distribute





Accelerating people & ideas since 1933



## **Robert Saik**

CEO AGvisorPRO





Accelerating people & ideas since 1933



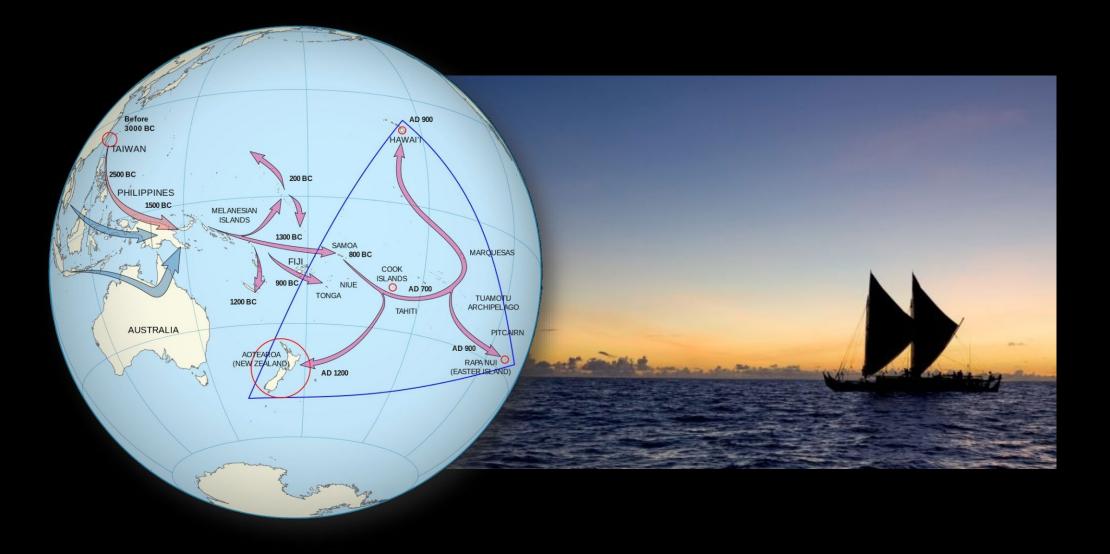
## **Anna-Lisa Paul**

Research Professor and Director of ICBR University of Florida



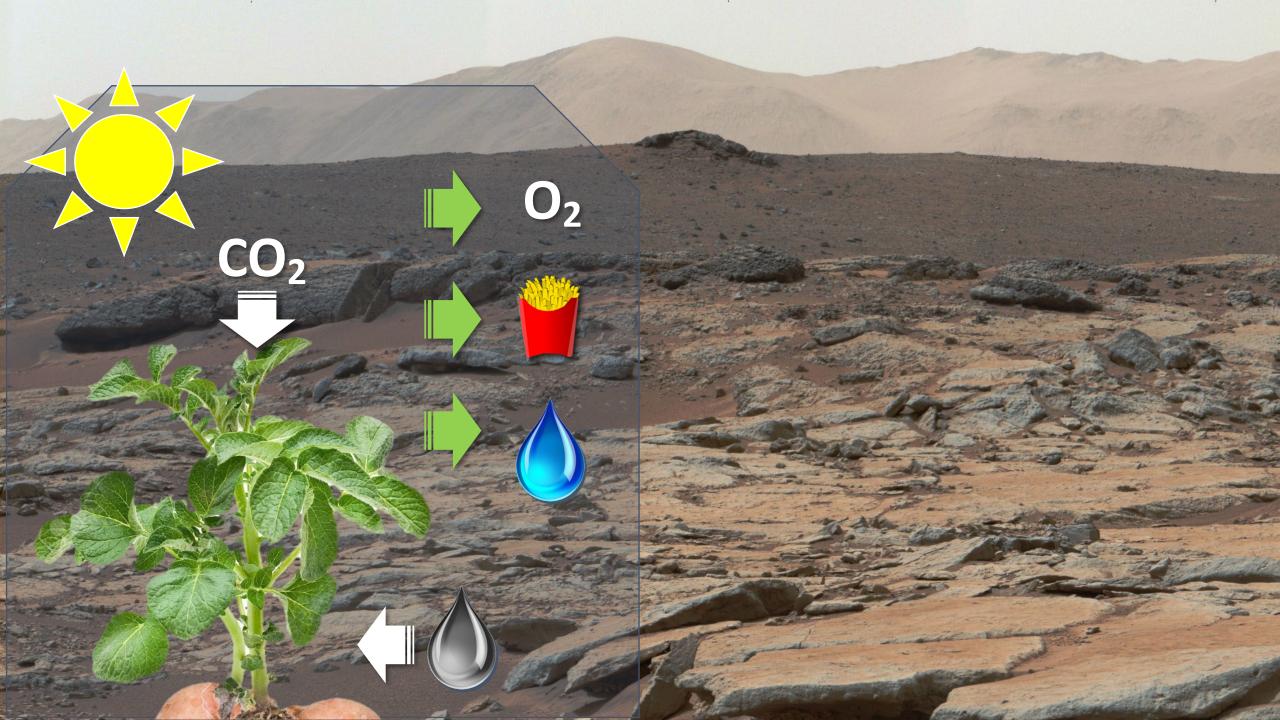
## Feeding Explorers – Taking Agriculture off Planet

### Anna-Lisa Paul


Department of Horticultural Sciences Program in Plant Molecular and Cellular Biology Interdisciplinary Center for Biotechnology Research



Farm Foundation Round Table June 2023




## When we explore, we take our biology with us.

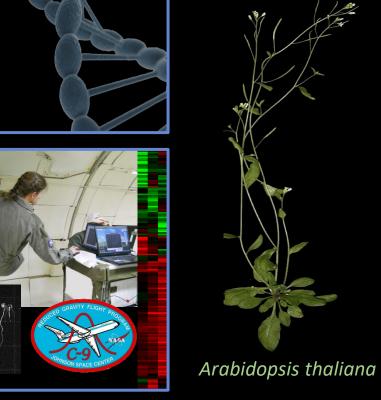


Exploring past the limits of a picnic basket requires we include plants in the journey

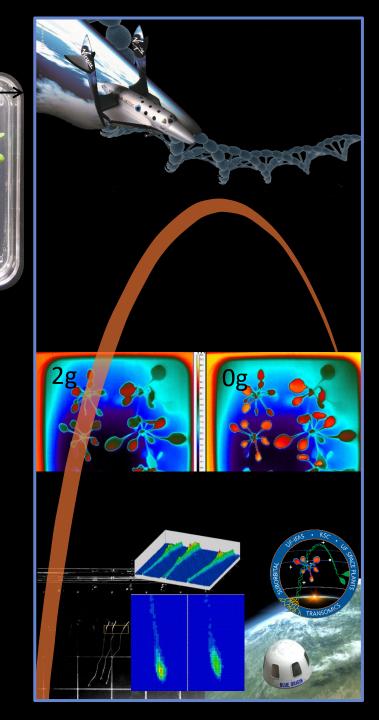
A reliable food supply is what allows us to BE explorers



Iron-complexed nutrients


Iron oxide minerals

- 10




## Spaceflight Environments





10 cm



## Planetary Analog Environments

Devon Island, Canadian High Arctic (HMP)

#### Neumayer III Station, Antarctica



# The journey and the destination are novel environments

We need to understand how they will cope

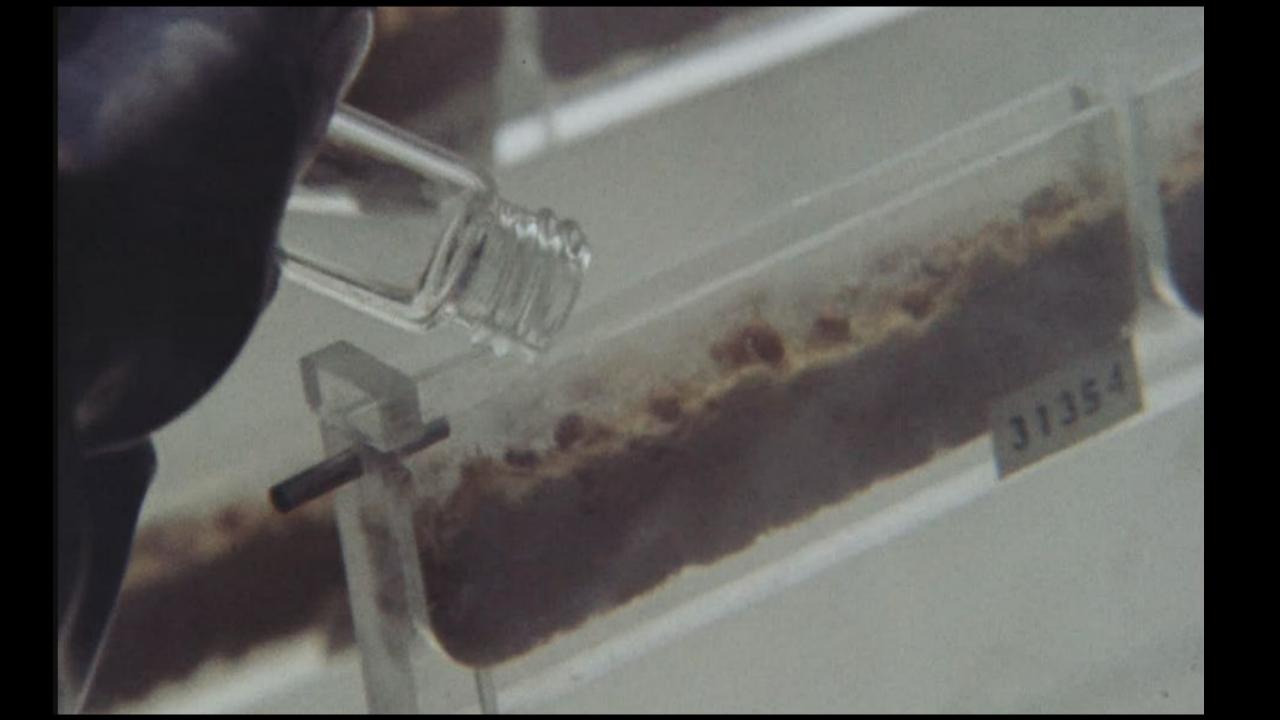


Powerful readout of physiological adaptation in the patterns of gene expression

RGF (AT5G64770)

XTH12 (AT5G57530)

## ISRU Regolith Habitats – Protected Ag


## The Question in 1969 – were lunar materials harmful to terrestrial life?

HORNET + 3

Family Mountain and edge of South Massif; Harrison Schmitt works alongside the lunar rover. Apollo 17-NASA

## Biology on the moon: Apollo Era





Plants played an important role in determining whether lunar materials were safe for terrestrial life

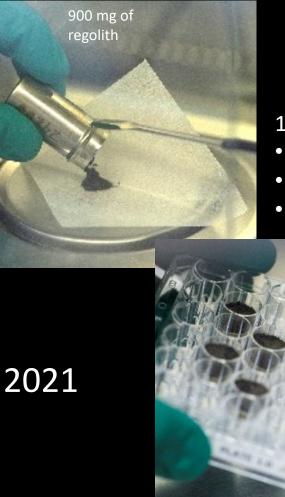
But plants were never actually grown in lunar regolith in the Apollo era

Family Mountain and edge of South Massif; Harrison Schmitt works alongside the lunar rover. Apollo 17-NASA

#### Article | Open Access | Published: 12 May 2022

#### Plants grown in Apollo lunar regolith present stressassociated transcriptomes that inform prospects for lunar exploration

<u>Anna-Lisa Paul</u> ⊠, <u>Stephen M. Elardo</u> & <u>Robert Ferl</u> ⊠


<u>Communications Biology</u> **5**, Article number: 382 (2022) Cite this article

62k Accesses | 9 Citations | 5939 Altmetric | Metrics

#### Abstract

The extent to which plants can enhance human life support on other worlds depends on the ability of plants to thrive in extraterrestrial environments using in-situ resources. Using samples from Apollo 11, 12, and 17, we show that the terrestrial plant *Arabidopsis thaliana* germinates and grows in diverse lunar regoliths. However, our results show that growth is challenging; the lunar regolith plants were slow to develop and many showed severe stress morphologies. Moreover, all plants grown in lunar soils differentially expressed genes indicating ionic stresses, similar to plant reactions to salt, metal and reactive oxygen species. Therefore, although in situ lunar regoliths can be useful for plant production in lunar habitats, they are not benign substrates. The interaction between plants and lunar regolith will need to be further elucidated, and likely mitigated, to best enable efficient use of lunar regolith for life support within lunar stations.

### Biology on the moon: The Artemis Era

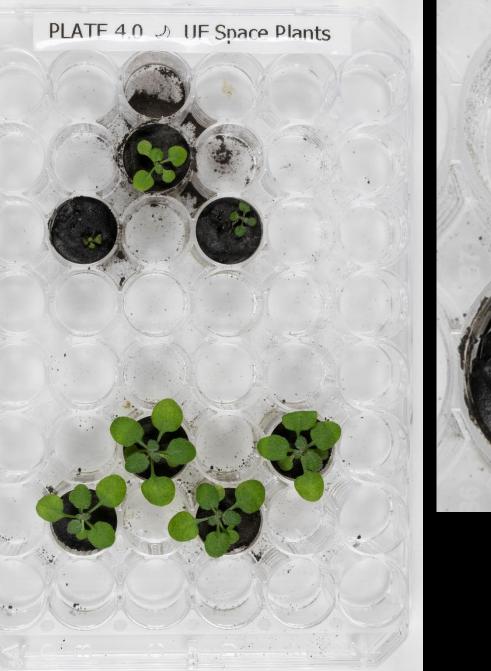




12 grams total

- 4g Apollo 11
- 4g Apollo 12
- 4g Apollo 17




### The first plants to germinate in lunar soil

### They all germinated



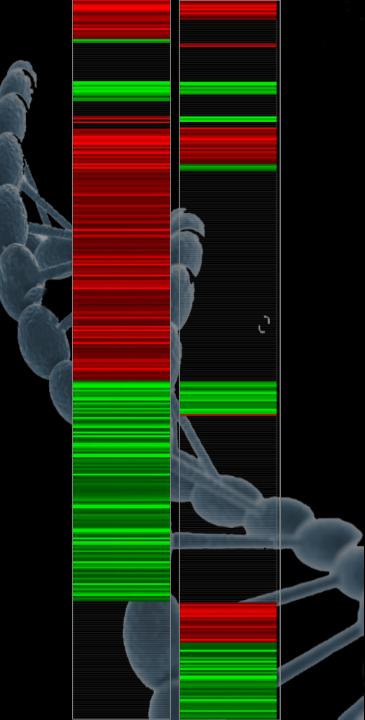
### Terrestrial life growing in extraterrestrial material







Plants grew differently than the controls And each Apollo site was different


### Transcriptomics











#### Sorting by Apollo site

Apollo 11







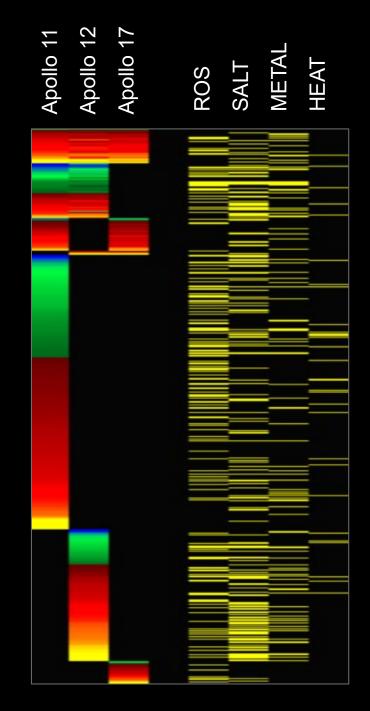























JSC-1A Controls


#### Getting closer to our exploration visions for extraterrestrial agriculture



### With translational applications to terrestrial agriculture



https://blogs.ifas.ufl.edu/news/2022/05/24/new-uf-ifas-professor-to-combine-ai-and-plantbreeding-teach-tomorrows-ai-innovators-headline/ UF/IFAS Professor Charlie Messina



# **Go Boldly**



#### **UF Space Plants Lab:**

Jordan Callaham Mingqi Zhou Hunter Strickland Deanna Baumann

Anna-Lisa Paul Robert Ferl

# **Many Thanks**





Accelerating people & ideas since 1933

## **QUESTIONS AND ANSWER**

# Please submit your questions on the meeting app or use one of the microphones.





Sylvia Wulf CEO AquaBounty Technologies, Inc.



David Nothmann CxO Multiple Ag Related Entities



Robert Saik CEO AGvisorPRO



Anna-Lisa Paul Research Professor and Director of ICBR University of Florida



Accelerating people & ideas since 1933

# **CLOSING KEYNOTE**

### **Round Table Meeting June 2023**





### Moderator Mark Titterington

**Director Forum for the Future of Agriculture** 





# **Aidan Connolly**

President AgriTech Capital



## **QUESTIONS AND ANSWER**

# Please submit your questions on the meeting app or use one of the microphones.





Accelerating people & ideas since 1933

# **OPEN MIC SESSION**

### **Round Table Meeting June 2023**



### We look forward to seeing you at the next Round Table January 16-19, in Hawaii!





Accelerating people & ideas since 1933