## **Research Funding and Farm Productivity** Julian M. Alston Philip G. Pardey University of California, Davis University of Minnesota INSTEPP INTERNATIONAL University of Minnesota

### Outline

- U.S. Agricultural R&D in a Global Context
  - Agriculture vs Total R&D Spending
     U.S. vs World Agricultural R&D
- Trends in U.S. Public Agricultural R&D
  - Overall Funding Trends
  - o Sources of Funds O Orientation of Funds
  - O Congruence of R&D and Value of Production
- U.S. Productivity
  - o Trends and Spatial Patterns
  - Slowdown
  - O Causes, Consequences, and Implications
- Farm Bill and Beyond
  - Australian RDC ModelFarm Bill Proposals





### Public Share of Total Expenditures (millions international \$) 2,479 132 2,611 Latin America and Caribbean (31) Asia & Pacific (26) China Subtotal, Developing Countries (118) 14,715 15,895 **United States** 3,828 4,601 8,428 45.4 Subtotal, Developed Countries (28) 10,149 12,577 22,726 44.7 Total (167) 24,864 13,756 38,620 64.4







# U.S. Public Agricultural R&D, 2004 Intramural USDA Research State Agricultural Experiment Stations 30 percent federal sources 47 percent state government 22 percent from other sources Industry Royalty revenue Other self-generated income Extension 21 percent federal sources 79 percent within-state sources









## Productivity Patterns and Policy Implications U.S. Productivity Trends and Spatial Patterns Slowdown Causes, Consequences, and Implications Farm Bill and Beyond Australian RDC Model Farm Bill Proposals



















|         |      | tates      |           |        |
|---------|------|------------|-----------|--------|
|         |      |            |           |        |
| Period  | U.S. | State Data |           |        |
|         |      | Average    | # of Obs. | p-val* |
|         | per  | cent       |           |        |
| 1950-89 | 2.01 | 2.01       | 1920      | 0.09   |
| 1950-59 | 2.05 | 2.23       | 480       | 0.15   |
| 1960-69 | 1.67 | 1.90       | 480       | 0.43   |
| 1970-79 | 2.51 | 2.03       | 480       | 0.28   |
| 1980-89 | 1.81 | 1.89       | 480       | 0.70   |
| 1990-02 | 1.11 | 0.70       | 624       | 0.00   |
| 1950-02 | 1.79 | 1.69       | 2,544     | na     |

## Causes of

- Reduced support for farm productivity R&D?
  - o Slower growth in total agricultural R&D investments
  - o Shrinking share for farm productivity
- Other possibilities?
  - o Shifting structure of U.S. general public R&D?
  - o Changing private sector roles?
  - o Changing regulatory environment?
  - o Reduced spillins from other countries and CGIAR?
  - o Degradation of natural resource base?
  - o Diminishing returns to new technology?
  - Bad weather?

## Slower U.S. Productivity Growth

- Reduced competitiveness compared with
  - o China? Latin America? Australia?
- Increased pressure on natural resource base
- Lower farm returns
- Higher food prices
- Reduced technology spillovers to poor LDCs

## Slower U.S. Productivity Growth

- May depend on causes
- Regardless of cause, cure requires
  - o Public investment in productivity-oriented research
  - o Institutional improvements to encourage private investment
- Mechanisms to
  - Direct research funds where payoff is highMinimize transaction costs

### The Australian Model

- R&D Corporations (RDCs)
  - o Similar to U.S. marketing orders
  - o Mandatory upon majority decision
  - o Financed by commodity taxes (like check-offs)
- Industry taxes matched by federal government
  - O Dollar-per-dollar, up to ½% of value of production
- Funds allocated by RDC board
  - o Producer, government, scientist, and other reps
  - Variety of mechanisms

    - Competitive grantsShort- and long-term contracts

## Advantages of the Australian Model

- Enhanced total funding for agricultural R&D
  - o Comparatively high ARIs
- Benefits distributed in proportion to costs
  - o Fair and efficient
  - o Incentive compatible
- Mutual commitment, politically sustainable
- Public funds freed up for "public goods" R&D
- Synergy with move away from price supports
  - Farmers focus on efficiency and quality

### Farm Bill Prospects

- Administration's Farm Bill proposal
  - o Some changes in funding approaches
  - o Increased R&D funding for · Biofuels; Specialty crops
- Will R&D funds be allocated
  - Effectively? Efficiently?
- Will R&D priorities
  - o emphasize newer agendas?
  - o at the expense of farm productivity research?
- Could an RDC model
  - o enhance new initiatives?
  - o and renew investments in farm productivity research?

| - |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |

