Energy Sorghums: Types and Production

W. Rooney
Texas A&M University, College Station
Potential US C4 Bioenergy Grass Feedstocks

<table>
<thead>
<tr>
<th>Crop</th>
<th>Growth</th>
<th>Propagation</th>
<th>History</th>
<th>Biomass</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switchgrass</td>
<td>Perennial</td>
<td>Seed</td>
<td>None</td>
<td>Lignocellulose</td>
<td>Problems w/ seed prod. & stand est.</td>
</tr>
<tr>
<td>Sugarcane</td>
<td>Perennial</td>
<td>Cutting</td>
<td>Sugar</td>
<td>Sugar, Lignocellulose</td>
<td>cold sus. limits range</td>
</tr>
<tr>
<td>Miscanthus</td>
<td>Perennial</td>
<td>Rhizomes</td>
<td>None</td>
<td>Lignocellulose</td>
<td>Propagation limited</td>
</tr>
<tr>
<td>Sorghum</td>
<td>Annual</td>
<td>Seed</td>
<td>Grain, Forage</td>
<td>Sugar, Starch Lignocellulose</td>
<td>Drought tolerance</td>
</tr>
</tbody>
</table>

Source: [UIUC](#) | Source: [USDA NRCS](#)
Sorghum as a biomass crop

- C4 photosynthesis
- Wide Adaptation
- High Yield Potential with regrowth potential
- Water Use Efficiency
- Drought Tolerance
- Pest Resistance
- Good Crop Rotation
- Non competitive with food, feed systems
- Existing Agricultural Infrastructure
- Non-invasive
- Winter Standing
- Excellent Genetic Platform
- Composition: Starch, sugar, cellulose available
- Perennial Crop
Even in a perennial system, an annual is needed......

Source: Mendel Biotech, Inc.
Different Sorghums – Different Uses, Carbohydrate Profiles and Total Yield

- Grain
- Forage
- Sweet
- Energy
Different Sorghums, Different Processes

Grain Sorghum

Sweet Sorghum

Energy Sorghum

Ligno-cellulosic biomass

Starch

Cellulose/Hemicellulose

Sugar

Ethanol

Ligni

Burn

Electricity

Sorghum: only bioenergy crop that produces commercial quantities of ligno-cellulosic, starch and sugar
Sweet Sorghum Production Logistics

- Production Systems
 - use existing infrastructure
- Planting: sorghum based
- Harvest: cane based
- Process: cane based
- Seed of Sweet Sorghums
 - Cultivars
 - Hybrids
 - Forage
 - True Sweet
Brix Values of Forage Sorghum Hybrids – Amarillo
Sugar Yield: Brix and Juice

Sugar Yield = Juice (lbs/acre) * Sugar

Concentration (g/100ml)

<table>
<thead>
<tr>
<th>Ethanol (gallons/acre)</th>
<th>Sugar Content (g/100ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>50.0</td>
<td>50.0</td>
</tr>
<tr>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>150.0</td>
<td>150.0</td>
</tr>
<tr>
<td>200.0</td>
<td>200.0</td>
</tr>
<tr>
<td>250.0</td>
<td>250.0</td>
</tr>
<tr>
<td>300.0</td>
<td>300.0</td>
</tr>
</tbody>
</table>

Commercial Forage Hybrids

Sweet Varieties

r² = 0.01

r² = 0.66

r² = 0.96

AgriLIFE RESEARCH
Texas A&M System
Sweet Sorghum Hybrids

- Varieties
 - Low Seed Yield
 - Difficult to Harvest
- Need Hybrids
- Seed Parent Development
 - High Brix
 - Short Height
 - Med to High Juice Volume
 - Good Seed Production
 - Daylength Insensitive
Sweet Sorghum Yields vary....

- Genotype
- Environment
- Harvest Time
- Biomass (t/acre)
 - 40, (0 to 70) FW
 - 10, (0 to 17.5) DW
- Grain Yield
 - 1, (.5 to 2)
- Fermentable Sugars
 - 15-20% brix
 - 65-75% purity (FS)
 - Mostly sucrose, some glucose and fructose
 - Small amounts of starch
- Sugar Yield (ton/acre)
 - 1.5, (0 to 3)
- Ratoon Crop (%1st crop)
 - 70, (30-125)
Other Issues in Sweet Sorghum

- Sugar is not Stable Post Harvest
- Just-in-Time Harvest
 - Yield
 - Quality
 - Choice of Hybrid
- Crop produces Grain
 - Management of starch in processing
- Year round production is not likely in US
 - Sub Tropical
 - Tropical
- Logical to combine with sugarcane production
Energy Sorghum

- **Photoperiod Sensitive:**
 - Reproductive growth when daylengths < 12"15" (or lower)

- **Benefits:**
 - Long Canopy Duration
 - Enhanced Drought Tolerance
 - Higher Biomass Accumulation
Biomass Yield Potential
Amarillo, Texas (2003-2005)

Tons/Acre (65% Moisture)

- Haygrazers (10): 22.3
- Photoperiod Sensitive (8): 33.3
- BMRs (23): 21.9
- Non-BMRs (32): 25.1
- Corn (3): 24.8

Source: B. Bean, T. C.
Water Use Efficiency
Amarillo, Texas (2003-2005)

Source: B. Bean, TCE
Energy Sorghum Growth Curves

Total Dry Weight/Plant (g)

Grain vs. PC Hybrid

Harvest Dates
Energy Sorghum Logistics

• Lignocellulosic Biomass
• Multiple Types to minimize storage and extend season
 – Multi-cut
 – Single-cut
• Planting
 – Traditional Sorghum
• Harvest
 – Multiple Approaches
• Rainfed Production
• Storage and Processing
• Season Long Harvest
• Large Scale Testing
• New Hybrid Scale Up
Energy Sorghum Observations

- Forage/Energy Sorghum PS Hybrids:
 - 8-10 dry T/acre
 - Animal palatability required
 - Multiple Harvest Crop

- Energy Sorghum:
 - Exp. Hybrids produce 8-14 dT/acre
 - Not selected for animal palatability
 - Single Harvest Crop

- Testing is Expanding this year....
Composition Variation

Table 3. Descriptive statistics on the predicted bioenergy constituents for sweet and biomass studies

<table>
<thead>
<tr>
<th>Constituent</th>
<th>SWHE(^\dagger) ((N^\dagger = 489))</th>
<th></th>
<th>PSEX ((N = 237))</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range</td>
<td>Mean (stdev)</td>
<td># in top 5%</td>
<td>Range</td>
</tr>
<tr>
<td>Glucan</td>
<td>20.1 - 40.8</td>
<td>28.1 (4.2)</td>
<td>36</td>
<td>21.8 - 34.0</td>
</tr>
<tr>
<td>Xylan</td>
<td>7.7 - 18.3</td>
<td>13.7 (1.5)</td>
<td>0</td>
<td>15.3 - 21.0</td>
</tr>
<tr>
<td>Lignin</td>
<td>8.9 - 15.8</td>
<td>12.1 (1.3)</td>
<td>0</td>
<td>12.9 - 20.1</td>
</tr>
<tr>
<td>Solubles</td>
<td>21 - 43.2</td>
<td>31.5 (5.0)</td>
<td>36</td>
<td>16.8 - 37.7</td>
</tr>
</tbody>
</table>

SWHE, sweet heterosis study from College Station and Weslaco for 2007 and 2008; PSEX, photoperiod-sensitive selections from College Station for 2008

\(^\dagger\)Number of samples predicted
Critical Research Needs

- Plant nutrition: specifically N
 - one ton of sorghum DM requires 20 lb N
- Genotype x Environment
- Harvesting technology
- Basic agronomics
- Water Management
 - Irrigated
 - Rainfed
- Cropping system sustainability
Agronomy / Crop Production

- Seeding and harvest time:
 Goal: providing a continuous supply of feedstock
- Growth and quality curves over time
- Effect of planting date
- Effect of stockpiling feedstock in the field
- One harvest or two harvests?
- Continuous harvesting between mid-June and mid-November?
Stagger Planting in Sweet Sorghum

<table>
<thead>
<tr>
<th>Plant Date</th>
<th>Predicted Harvest</th>
</tr>
</thead>
<tbody>
<tr>
<td>April</td>
<td>June</td>
</tr>
<tr>
<td>May</td>
<td>July</td>
</tr>
<tr>
<td>June</td>
<td>Sep</td>
</tr>
<tr>
<td>July</td>
<td>Aug</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Umb</th>
<th>Della</th>
<th>M81</th>
<th>Della</th>
<th>M81</th>
<th>Umb</th>
<th>M81</th>
<th>Della</th>
<th>Umb</th>
<th>Della</th>
<th>M81</th>
</tr>
</thead>
<tbody>
<tr>
<td>1204</td>
<td>1504</td>
<td>1804</td>
<td>2204</td>
<td>2504</td>
<td>2804</td>
<td>3204</td>
<td>3504</td>
<td>3804</td>
<td>4204</td>
<td>4504</td>
</tr>
<tr>
<td>1203</td>
<td>1503</td>
<td>1803</td>
<td>2203</td>
<td>2503</td>
<td>2803</td>
<td>3203</td>
<td>3503</td>
<td>3803</td>
<td>4203</td>
<td>4503</td>
</tr>
<tr>
<td>1202</td>
<td>1502</td>
<td>1802</td>
<td>2202</td>
<td>2502</td>
<td>2802</td>
<td>3202</td>
<td>3502</td>
<td>3802</td>
<td>4202</td>
<td>4502</td>
</tr>
<tr>
<td>1201</td>
<td>1501</td>
<td>1801</td>
<td>2201</td>
<td>2501</td>
<td>2801</td>
<td>3201</td>
<td>3501</td>
<td>3801</td>
<td>4201</td>
<td>4501</td>
</tr>
<tr>
<td>1104</td>
<td>1404</td>
<td>1704</td>
<td>2104</td>
<td>2404</td>
<td>2704</td>
<td>3104</td>
<td>3404</td>
<td>3704</td>
<td>4104</td>
<td>4404</td>
</tr>
<tr>
<td>1103</td>
<td>1403</td>
<td>1703</td>
<td>2103</td>
<td>2403</td>
<td>2703</td>
<td>3103</td>
<td>3403</td>
<td>3703</td>
<td>4103</td>
<td>4403</td>
</tr>
<tr>
<td>1102</td>
<td>1402</td>
<td>1702</td>
<td>2102</td>
<td>2402</td>
<td>2702</td>
<td>3102</td>
<td>3402</td>
<td>3702</td>
<td>4102</td>
<td>4402</td>
</tr>
<tr>
<td>1101</td>
<td>1401</td>
<td>1701</td>
<td>2101</td>
<td>2401</td>
<td>2701</td>
<td>3101</td>
<td>3401</td>
<td>3701</td>
<td>4101</td>
<td>4401</td>
</tr>
</tbody>
</table>
Sorghum

- Energy Types will be available
- Annual Energy Crops will be needed
- Forage Sorghum Production Guidelines need modification for Energy Production
 - Fertilization
 - Harvest
 - Crop Rotations