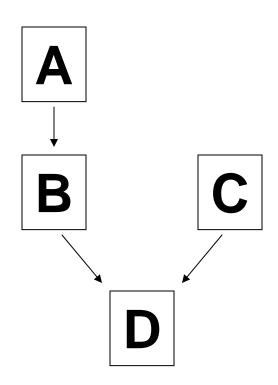
The bioeconomics of the emerald ash borer invasion in Ohio and Michigan.

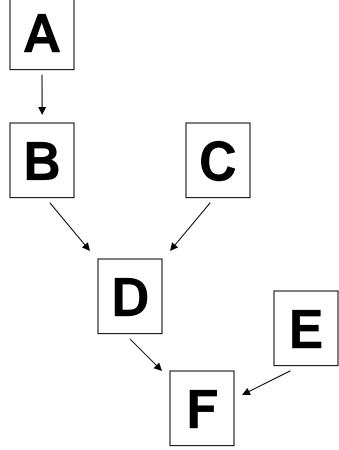
Jon Bossenbroek - University of Toledo David Finnoff - University of Wyoming Louis Iverson - U.S. Forest Service Anatha Prasad - U.S. Forest Service David Sydnor - Ohio State University Audra Croskey - University of Toledo Charles Sims - University of Wyoming Shana M. McDermott - Univ. of Wyoming

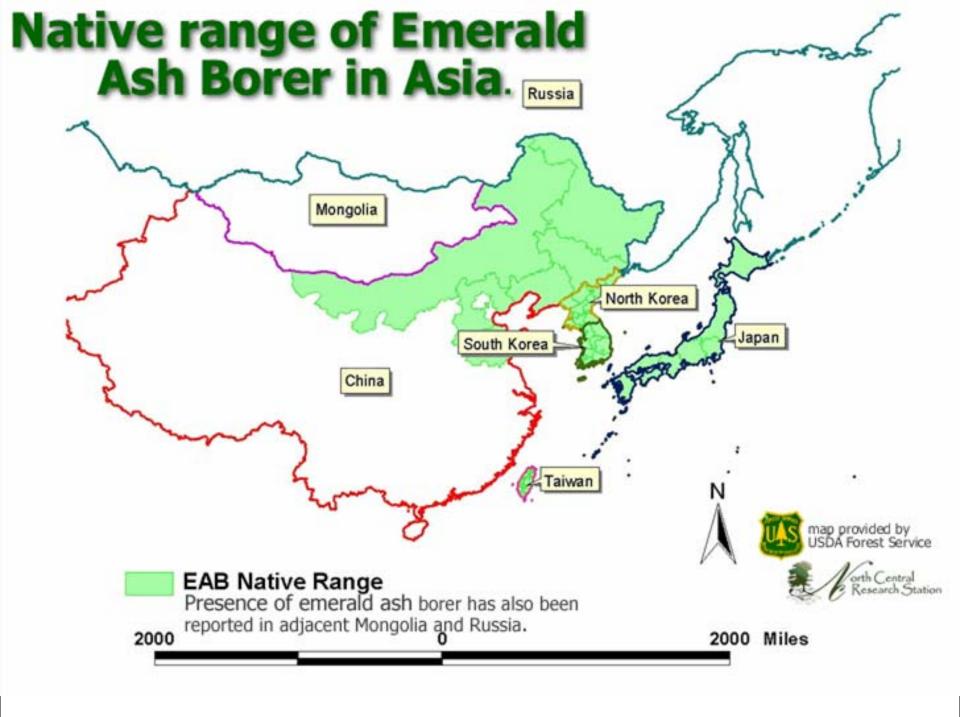
A bioeconomic framework for invasive species


Objectives:

 1) to provide estimates of the regional economic impact an invasive species will potentially inflict;

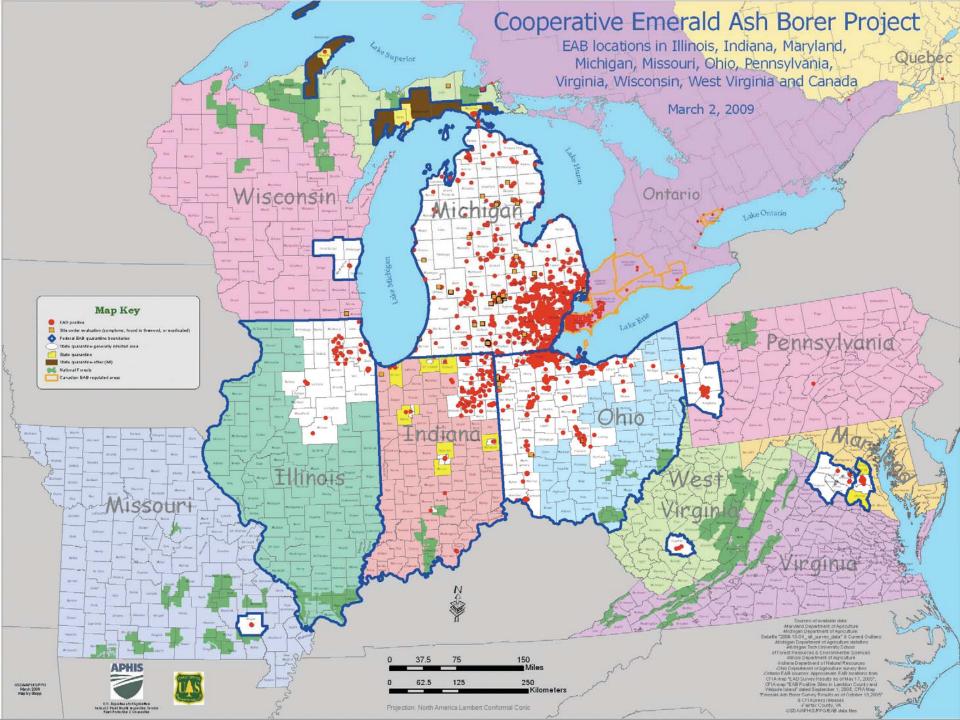
 2) to provide policy-makers with quantitative guidance for cost-effective alternative strategies to control, prevent, or slow the spread of an invasive species.


Objective 1: to provide estimates of the regional economic impact of an invasive species.

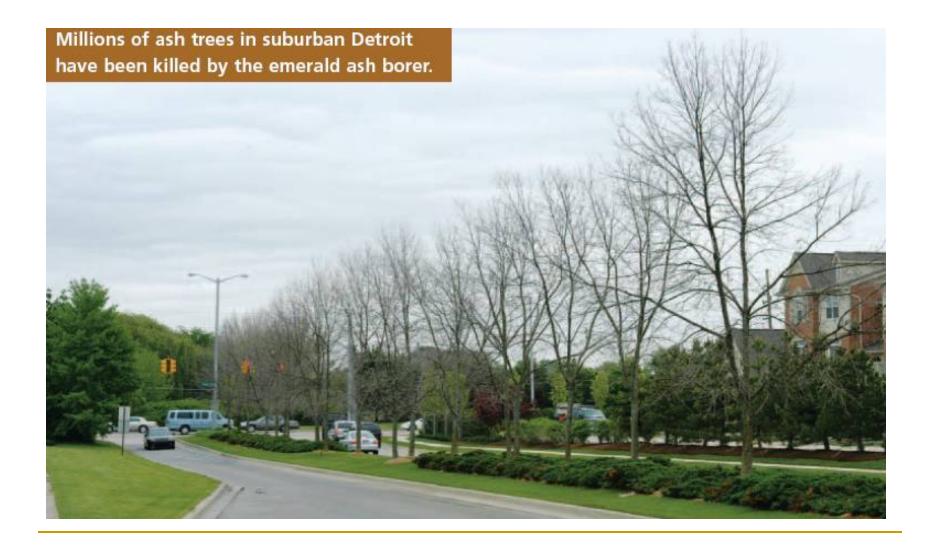

- Estimate the potential habitat A
- Predict the spread B
- Estimate economic impact in a spatially explicit manner - C
- Determine the regional economic consequences of spread through the economy - D

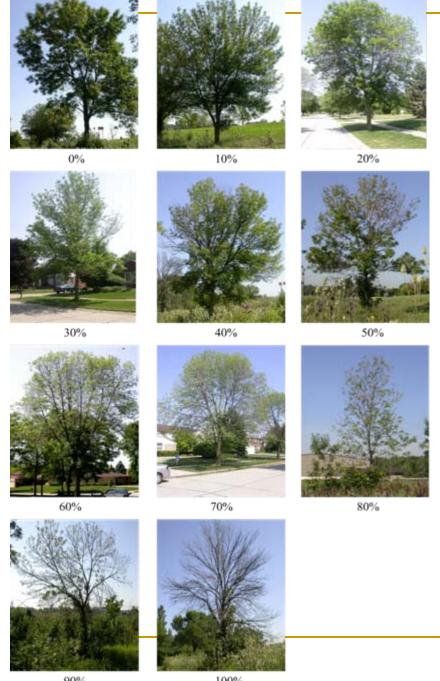
Objective 2: to provide policy-makers with quantitative guidance for cost-effective alternative strategies to control, prevent, or slow the spread of an invasive species.

- Determine cost and effectiveness of different prevention and control strategies - E
- Integrate habitat, spread, economics and management using Stochastic Dynamic Programming - F



How did EAB arrive in North America?


- Arrived in solid wood packing material from Asia 10 -12 years ago.
- First detected in Detroit/Windsor area in July 2002.



Effects of the EAB Invasion

- Over 40 million ash dead
- USDA has allocated \$43.4 million for eradication
- Potential effects:
 - Estimated 3.8 billion white ash
 - \$1 billion worth of standing ash timber
 - \$2.3 million in nursery sales (1998). Estimated \$20 million (2002)

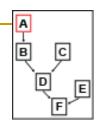
Impacts

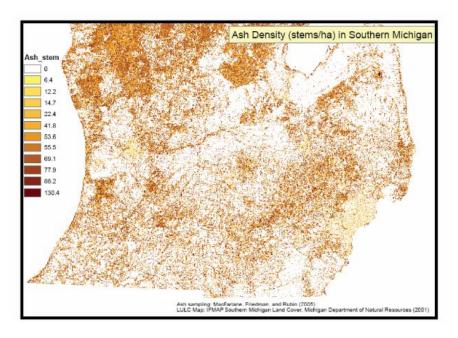
http://www.naturalnewscapes.com/Quickstart/ImageLib/ Insect-Emerald_defoliation.jpg

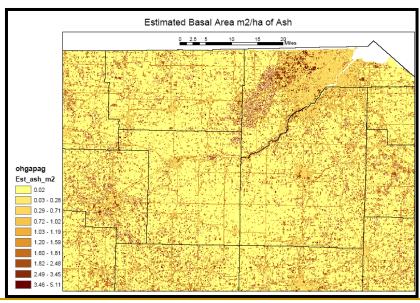
www.michigan.gov

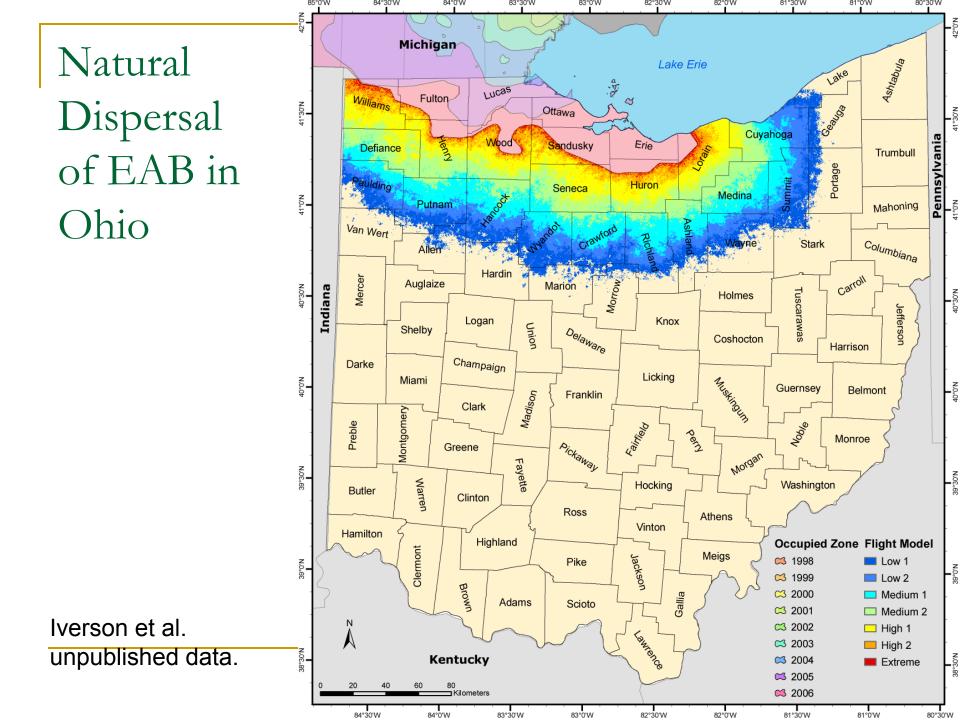
http://www.ipm.msu.edu/cat08land/l05-16-08.htm

Symptoms of Emerald Ash Borer


Galleries beneath bark



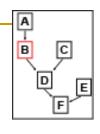

D-Shaped exit holes



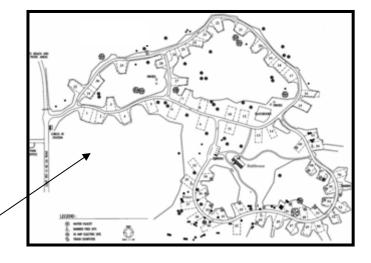
From Dr. Louis Iverson and Anatha Prasad - USFS

Predict the spread of emerald ash borer

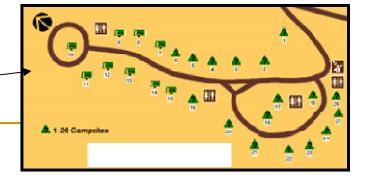
- Local Dispersal
 - □ Flight (~2 km/yr)
 - Local human spread (~20 km/yr)

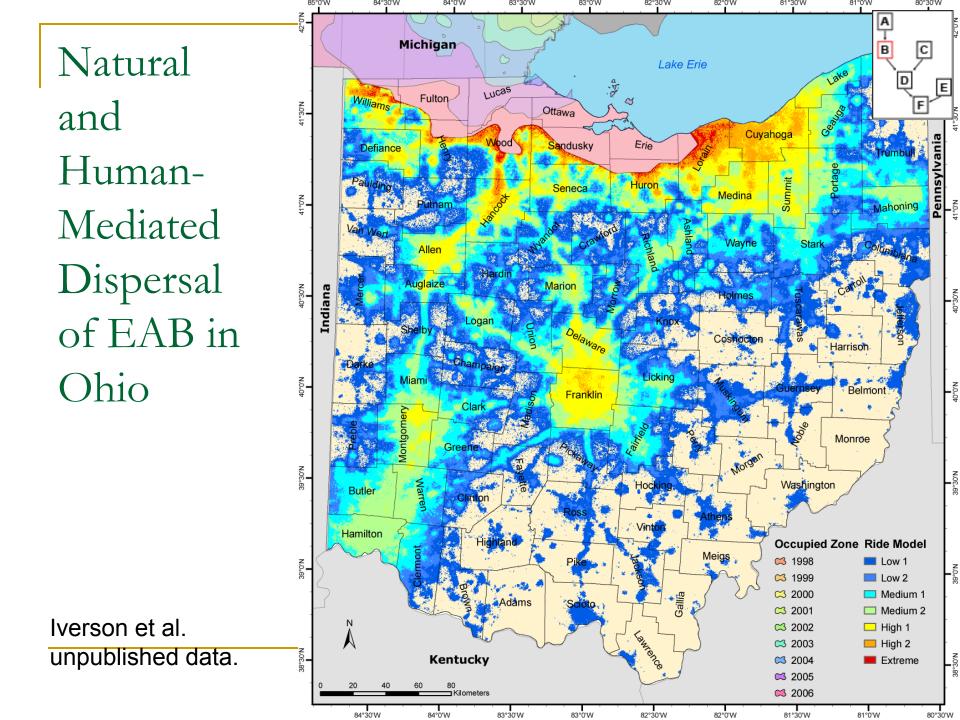

Predict the spread of emerald ash borer

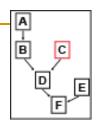
- Local Dispersal
 - □ Flight (~2 km/yr)
 - Local human spread (~20 km/yr)
- Human-mediated dispersal
 - Campers moving firewood
 - Hitchhikers on cars, trucks, etc.
 - i.e. road networks.
 - Wood products industry



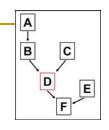
Predict the spread of emerald ash borer: Human-mediated dispersal




$$U_{ij} = \sum_{i=1}^{K} A_i O_i W_j D_{ij}^{-d}$$


Campers with Firewood

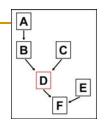
Estimate value of ash in spatially explicit manner

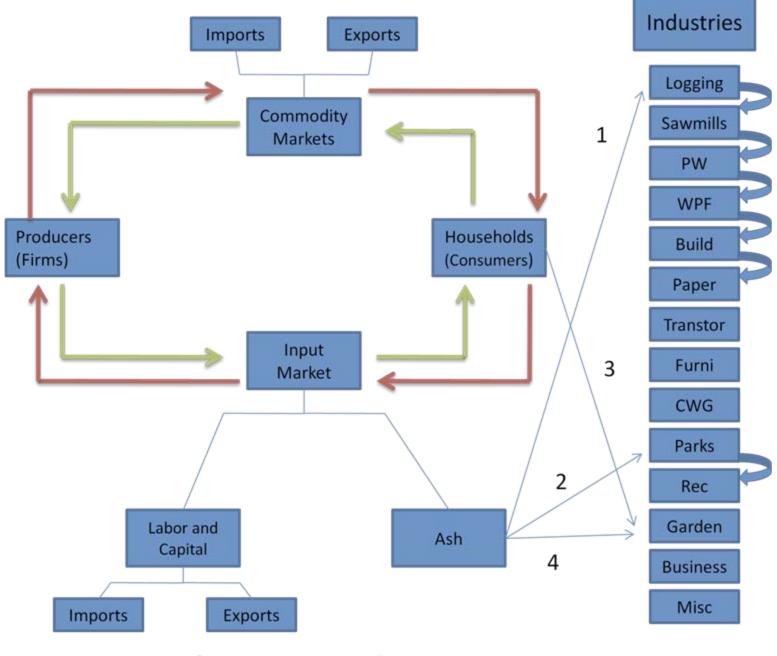

- Impact on Communities
 - Tree City USA program to estimate urban values.
- Forest products:

The Potential Economic Impacts of Emerald Ash Borer (Agrilus planipennis) on Ohio, U.S., Communities T. Davis Sydnor, Matthew Bumgardner, and Andrew Todd Arboriculture & Urban Forestry 2007. 33(1):48–54.

Landscape Replacement Tree Removal **Values** Costs Costs 16,543 13,838 5,945 Street Trees 22,968 11,101 Park Trees 25,724 258,982 216,621 93,067 **Private Trees** 110,113 301,249 **Totals** 253,427

Potential losses per 1000 residents in dollars. Adapted from Sydnor et al. (2007)

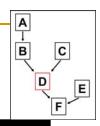

Regional economic consequences of the spread of the emerald ash borer


Objective:

- Address the regional welfare consequences in Ohio and Michigan from the loss of ash harvest using a Computable General Equilibrium (CGE) model.
- Estimating the impact from an invasion of EAB requires incorporating 4 items properly:
 - □ The economic sectors affected by ash harvest, which are vertically integrated.
 - Adjustments in production represent changes in each sector's optimal production bundle.
 - □ The cost impact on parks and recreation.
 - □ Household and state income impacts due to the removal costs of ash trees.
 - □ Demand impacts to account for the additional demand on the garden sector.

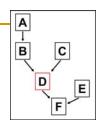
Regional economic consequences of the spread of the emerald ash borer

- A multi-sector general equilibrium model with interindustry linkages, factor markets, households, government receipts and expenditures, and trade.
 - □ The aggregated industries include:
 - logging, sawmills, processed wood, finished wood products, building, business services, transportation/storage, furniture, consumer wood goods, recreation, paper, garden stores, parks, and miscellaneous.
 - □ Firms use inputs of factors and intermediate goods via a Leontief production function.
 - □ Factor markets consist directly of labor and capital, and indirectly of ash and technology.
 - Households are linked to industries through commodity and factor markets. Household utility is given by nested CES functions.
 - Government interactions are accounted for as government redistribution schemes.



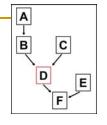
Green arrows= monetary flows
Red arrows= real flows

Regional economic consequences of the spread of the emerald ash borer


In equilibrium agents make optimal decisions while linked to each other such that prices adjust and no excess demand exists.

Annual Impacts

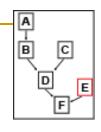
Mode of Impact	Average Welfare Impact				
	MI	ОН			
Vertically Integrated	-\$3.801 million	-\$2.85 million			
Production (excluding Parks					
and Recreation Sectors)					
Parks and Recreation Cost	-\$3.701 million	-\$2.95 million			
Impact					
Household Income	-\$49.93 million	-\$51.92 million			
Reduction					
Garden Sector Demand	\$6,665	\$5,924			
Increase (HH)					
State Cost Impact	-\$537,500	-\$492,400			
Garden Sector Demand	\$1,320	\$847			
Increase (State)					
Total Annual Impact	-\$57.96 million	-\$58.20 million			


Annual Impact Per Household

Annual Michigan Overall Impacts Per								
Household								
	Average	Average						
	Income	Impact (over						
		7,776 scenarios)						
HHD1	\$4,951.31	-\$0.46						
HHD2	\$12,378.24	-\$0.13						
HHD3	\$19,805.20	-\$0.21						
HHD4	\$29,707.78	-\$14.34						
HHD5	\$42,086.02	-\$15.59						
HHD6	\$69,318.19	-\$17.87						
HHD7	\$89,123.40	-\$19.41						
HHD8	\$123,782.47	-\$21.96						
HHD9	\$173,295.49	-\$24.82						

Annual Ohio Overall Impacts Per Individual Household							
	Average Income	Average Impact (over 7,776 scenarios)					
HHD1	\$6,342.55	\$0.91					
HHD2	\$15,856.47	\$0.26					
HHD3	\$25,370.19	-\$0.40					
HHD4	\$38,055.38	-\$14.32					
HHD5	\$53,911.73	-\$15.21					
HHD6	\$88,795.80	-\$17.08					
HHD7	\$114,166.07	-\$17.81					
HHD8	\$158,563.95	-\$19.84					
HHD9	\$221,989.53	-\$22.35					

CGE Results over 10 years:



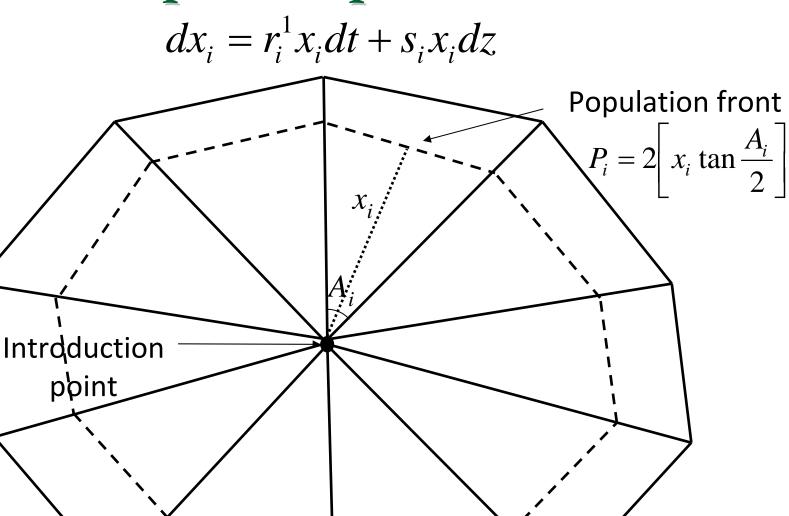
- □ For Ohio, the total net present value of damages is \$457 million.
- □ For Michigan, the total net present value of damages is \$461 million.
 - However, a static model is inapt for calculating total economic impacts because behavioral adaptations to a loss of ash occur over time.
- This CGE model introduces more in depth welfare impacts by looking at specific income groups.
 - Previous welfare estimates do not take into account the effect of price adjustments from a loss of ash.
 - Other models that keep prices fixed will overestimate the welfare impacts and lack the detail that the CGE model provides.
 - □ Both welfare estimates are more than half of the projected losses from previous fixed price models.

Objective 2: provide policy-makers with quantitative guidance for cost-effective alternative strategies to control, prevent, or slow the spread of emerald ash borer.

 Determine cost and effectiveness of different prevention and control strategies

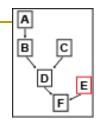
 Link distribution and spread models with CGE to optimize resources

 Determine cost and effectiveness of different prevention and control strategies


- Examined eradication for 2 scenarios:
 - 1) How much would it have been worth to stop the spread initially in Michigan?
 - Does this depend on who is making the decisions?
 - 2) How long would damages be delayed in Ohio.

Real options model

A C E

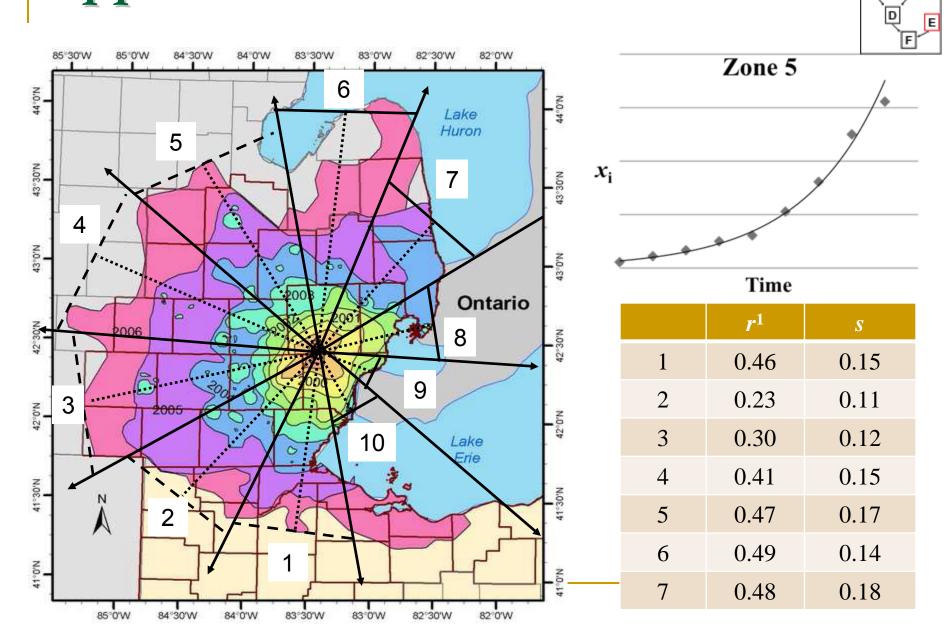

- Real options ideal for evaluating invasive policies
 - 1. Uncertain spread of invasive species
 - Control cost irreversible
 - 3. Policy adoption can be delayed to obtain more information
 - Results of Real Options models are dependent of the specifications of the stochastic spread process.
- Used Geometric Brownian motion (GBM)
 - Pros
 - Non-constant drift rate consistent with stratified dispersal
 - Explicit solution for investment threshold D*
 - Cons
 - Assumes process is unbounded above
- Barriers arise due to natural and geopolitical boundaries
- GBM may overestimate pest damages and bias decision making by allowing infinite population levels

Invasive species spread

Upper ___ absorbiุกg barrier

Damages and control costs

Monetary damages from invasive species:

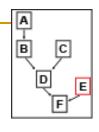

$$D_{i} = \gamma x_{i}^{\theta}$$
 where $\gamma > 0$ and $\theta > 1$

Assume r^1 can be reduced to r^2 with cost

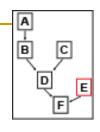
$$C_i = \upsilon P_i^a \left(r_i^1 - r_i^2 \right)^b$$
 where $\upsilon > 0$, $a \le 1$, and $b > 1$

- Damages and control costs evolve according to GBM with upper barriers at \overline{D}_i and \overline{C}_i
- Objective: Choose optimal degree of control $r_i^{2^*}$ and optimal time to control D_i^*

Application to emerald ash borer

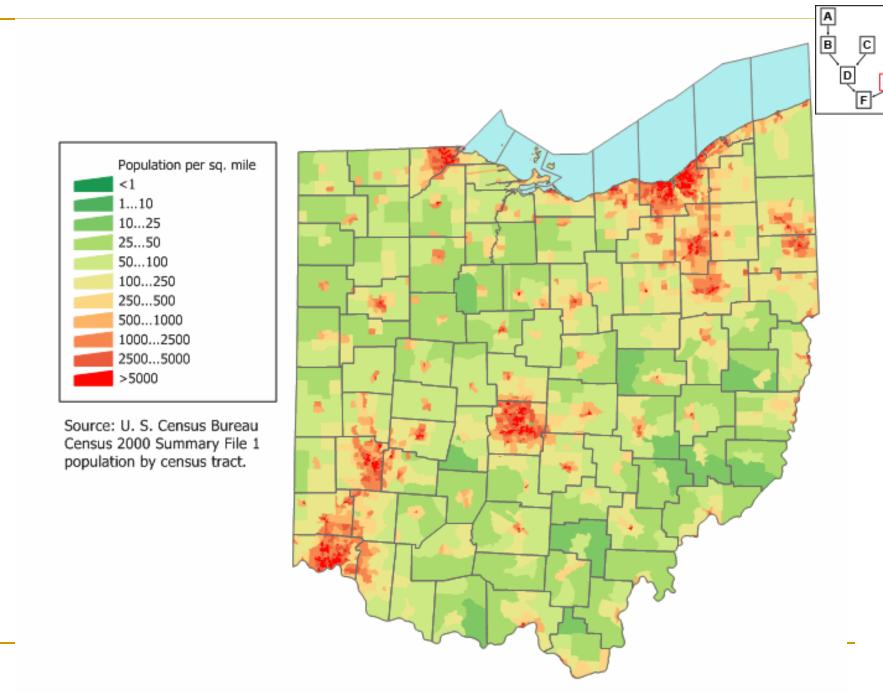

Optimal EAB control policies

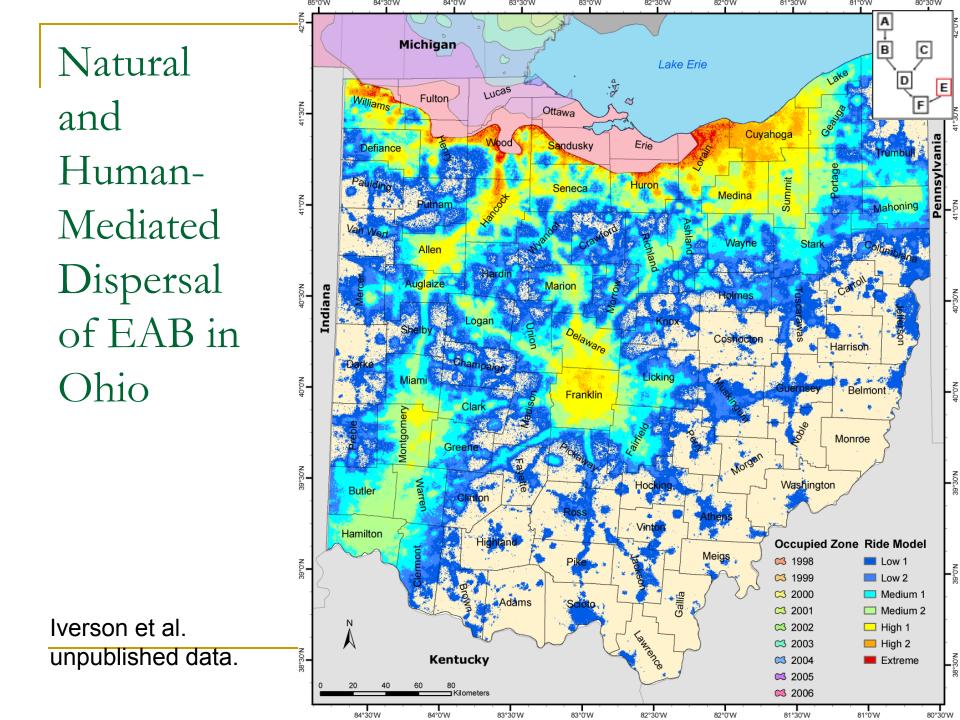
	Management zone						Total	
	1	2	3	4	5	6	7	control cost
Federal level control: upper barrier corresponds to US border or lake								
reduction in spread rate	95.9%	92.0%	91.0%	86.7%	92.5%	0.4%	0.02%	\$2
r_i^2*	0.02	0.02	0.03	0.05	0.04	0.49	0.48	billion


Optimal EAB control policies

	Management zone					Total		
	1	2	3	4	5	6	7	control cost
Federal level control: upper barrier corresponds to US border or lake								
reduction in spread rate	95.9%	92.0%	91.0%	86.7%	92.5%	0.4%	0.02%	\$2
r_i^2*	0.02	0.02	0.03	0.05	0.04	0.49	0.48	billion
State level control: upper barrier corresponds to Michigan border or lake								
reduction in spread rate	0.0%	0.3%	85.7%	86.7%	92.5%	0.4%	0.02%	\$1.1 billion
r_i^2*	0.46	0.23	0.04	0.05	0.04	0.49	0.48	

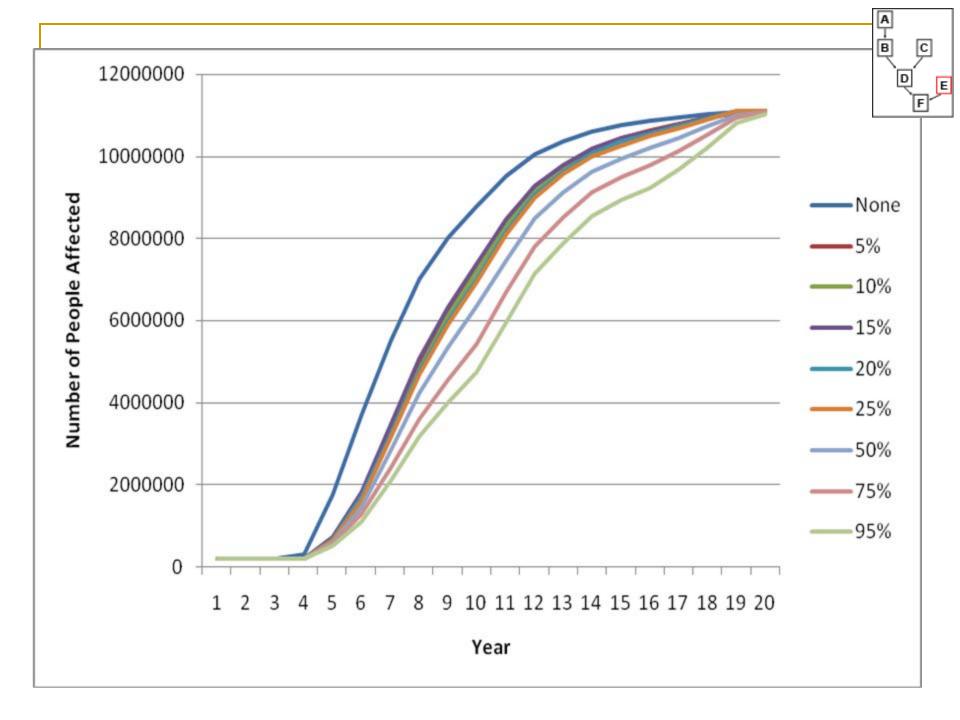
Take home points

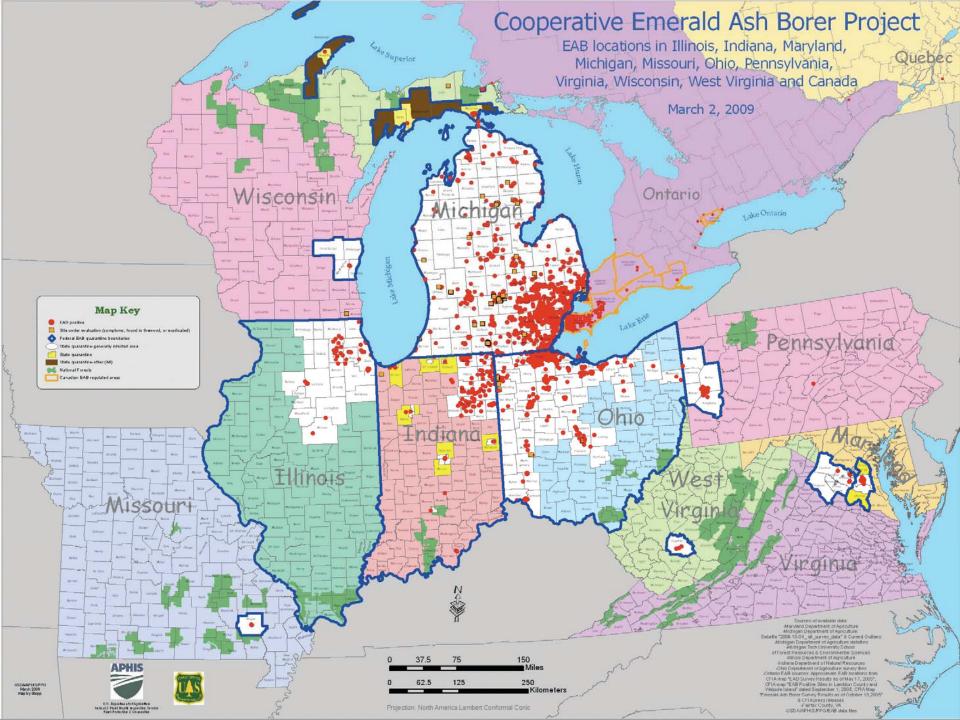



- Ignoring barriers to spread severely overestimates optimal control expenditures
- Level of decision making (state, federal) impacts total expenditures and location of control efforts
- Spatial dynamic control externality helps perpetuate invasive species spread

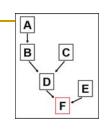
 Determine cost and effectiveness of different prevention and control strategies

- Examined eradication for 2 scenarios:
 - 1) How much would it have been worth to stop the spread initially in Michigan?
 - Does this depend on who is making the decisions?
 - 2) How long would damages be delayed in Ohio.




Spread model with eradication

 Using the following model we assessed how much the spread of EAB would be slowed if long-distance infestation events were eradicated.


$$I_X = Bernoulli(ls*(risk_X)) + Bernoulli(d_X*ws)$$

- I_X infestation status
- Is = a long distance scalar
- risk_x = risk value
- d_x = distance of location x from the wave front
- ws = wave front spread parameter

Link distribution and spread models with CGE to optimize resources.

- ...where we are headed.
 - Linking Real Options Model with number of people impacted rather than area impacted.
 - Including distribution of ash and urban areas in Real Options Model.

Conclusions

- Human-mediated dispersal is important for the spread of emerald ash borer.
- Eradication not likely to stop spread, but could slow the economic impact.
- It would have been worth over \$1 billion to slow the initial spread of the emerald ash borer in Michigan.
- This invasion is and will continue to cause millions in welfare loss to Ohio, Michigan and beyond.

Acknowledgements

EAB PREISM Team:

- Co-Pls/Collaborators
 - David Finnoff Univ. of Wyoming
 - Louis Iverson U.S. Forest Service
 - Davis Sydnor Ohio State Univ.
 - Anatha Prasad U.S. Forest Service
 - Charles B. Sims Utah State Univ.
- Graduate Students
 - Matt Peters Ohio State Univ.
 - Shana M. McDermott Univ. of Wyoming
 - Maria Tumeo Univ. of Toledo
 - Audra Croskey Univ. of Toledo
- Undergraduates
 - Phil Mathias
 - Emily Heppner

Funding:

USDA PREISM program, Sigma Xi, University of Toledo.

Ohio Annual Impacts

Table 1: Summary of Annual Ohio Median Impact From Complete Loss of Ash				
Harvest				
Mode of Impact	Average Welfare Impact			
Vertically Integrated Production	-\$2.85 million			
(excluding Parks and Recreation				
Sectors)				
Parks and Recreation Cost Impacts	-\$2.95 million			
Household Income Reduction	-\$51.92 million			
Garden Sector Demand Increase (HH)	\$5,924			
State Cost Impact	-\$492,400			
Garden Sector Demand Increase (State)	\$847			
Total Annual Impact	-\$58.20 million			

Ohio Annual Impact Per Household

Table 2: Annual Ohio Overall Impacts Per Individual Household						
	Average Income	Minimum Impact (Logging Affected Only)	Maximum Impact (All Industries Affected)	Average Impact (over 7,776 scenarios)		
HHD1	\$6,342.55	\$1.13	\$0.69	\$0.91		
HHD2	\$15,856.47	\$0.31	\$0.20	\$0.26		
HHD3	\$25,370.19	-\$0.42	-\$0.37	-\$0.40		
HHD4	\$38,055.38	-\$14.31	-\$14.32	-\$14.32		
HHD5	\$53,911.73	-\$15.11	-\$15.32	-\$15.21		
HHD6	\$88,795.80	-\$16.81	-\$17.36	-\$17.08		
HHD7	\$114,166.07	-\$17.34	-\$18.28	-\$17.81		
HHD8	\$158,563.95	-\$19.19	-\$20.49	-\$19.84		
HHD9	\$221,989.53	-\$21.48	-\$23.22	-\$22.35		

Michigan Annual Impacts

Table 2: Summary of Annual Michigan Median Impact From Complete Loss of				
Ash Harvest				
Mode of Impact	Average Welfare Impact			
Vertically Integrated Production	-\$3.801 million			
(excluding Parks and Recreation				
Sectors)				
Parks and Recreation Cost Impact	-\$3.701 million			
Household Income Reduction	-\$49.93 million			
Garden Sector Demand Increase (HH)	\$6,665			
State Cost Impact	-\$537,500			
Garden Sector Demand Increase (State)	\$1,320			
Total Annual Impact	-\$57.96 million			

Michigan Annual Impact Per Household

Table 32: Annual Michigan Overall Impacts Per Household							
Equivalent Variation (EV)	Average Income	Minimum Maximum Impact Impact (Logging (All Affected Industries Only) Affected)		Average Impact (over 7,776 scenarios)			
HHD1	\$4,951.31	-\$0.21	-\$0.70	-\$0.46			
HHD2	\$12,378.24	-\$0.08	-\$0.18	-\$0.13			
HHD3	\$19,805.20	-\$0.24	-\$0.19	-\$0.21			
HHD4	\$29,707.78	-\$14.32	-\$14.36	-\$14.34			
HHD5	\$42,086.02	-\$15.42	-\$15.75	-\$15.59			
HHD6	\$69,318.19	-\$17.48	-\$18.26	-\$17.87			
HHD7	\$89,123.40	-\$18.79	-\$20.03	-\$19.41			
HHD8	\$123,782.47	-\$21.09	-\$22.84	-\$21.96			
HHD9	\$173,295.49	-\$23.64	-\$26.01	-\$24.82			

Discussion

- A static model is inapt for calculating total economic impacts because behavioral adaptations to a loss of ash occur over time.
- Given these limitations, a back of the envelope calculation of the dynamic consequences using the annual estimates can be done.
 - □ For Ohio, the total net present value of damages is \$457 million.
 - □ For Michigan, the total net present value of damages is \$461 million.
- This CGE model introduces more in depth welfare impacts by looking at specific income groups.
 - Previous welfare estimates do not take into account the effect of price adjustments from a loss of ash.
 - Other models that keep prices fixed will overestimate the welfare impacts and lack the detail that the CGE model provides.
 - □ Both welfare estimates are more than half of the projected losses from previous fixed price models.
- Detailed welfare impacts are necessary when deciding mitigation policies for EAB or other ecological invasions.
- There are many ways to extend this analysis.
 - □ The next step is look at the policy for eradicating and preventing the spread of EAB.
- This paper is capable of increasing the momentum for future invasive species research.

Works Cited

- Bureau of Economic Analysis. "Gross Domestic Product by State." Regional Economic Accounts. 2008. Bureau of Economic Analysis.
 - http://www.bea.gov/regional/gsp/action.cfm.
- "Ohio Trees, Bulletin 700-00, Fraxinus Ash." <u>Ohioline</u>. 02 Oct. 2009 http://ohioline.osu.edu/b700/b700_63.html.
- Sims, Charles. "Essays on the Bioeconomic Control of Invasive Species and Forest Pests." Diss. University of Wyoming, 2009. Print.
- Varian, Hal R. Microeconomic analysis. New York: Norton, 1992.

Invasive species spread

Upper ___ absorbiฺกูg barrier

Optimal EAB control policies

	Management zone					_Total control		
	1	2	3	4	5	6	7	expenditures
Optim	al contro	ol of unbo	ounded in	nvasion:	no upper	barrier		
% reduction in spread rate	96.6	92.3	91.6	95.1	95.8	95.1	96.5	\$3.4 billion
r_i^2*	0.02	0.02	0.03	0.02	0.02	0.02	0.02	
Federal level	Federal level control: upper barrier corresponds to US border or lake							
% reduction in spread rate	95.9	92.0	91.0	86.7	92.5	0.4	0.02	\$2 billion
r_i^2*	0.02	0.02	0.03	0.05	0.04	0.49	0.48	
State level con	trol: up	per barrie	er corresp	onds to	Michiga	n border	or lake	
% reduction in spread rate	0.0	0.3	85.7	86.7	92.5	0.4	0.02	\$1.1 billion
r_i^2*	0.46	0.23	0.04	0.05	0.04	0.49	0.48	