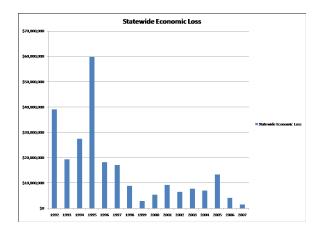
MARKET-BASED CONTROL OF INVASIVE SPECIES: B. tabaci in Arizona

T. J. Richards, R. Tronstad, S. Naranjo and P. Ellsworth

Arizona State University, University of Arizona, USDA-ARS and University of Arizona

20th October 2009

Cost of Whitefly Infestation in Arizona



Source: ARS Estimates.

Introduction

OVERVIEW

00000 OVERVIEW

- Research Problem
- Objectives
- Theory of Externality Regulation
- Economic Model
- Data Description
- Results and Discussion
- Conclusions and Implications

Introduction

ECONOMIC COST OF INVASIVE INSECTS

- Cost due to both control and yield loss
- 13\% of crop production lost to insects in 2005
- 40% of insects are invasive
- \$13.5 billion dollars
- Arizona Invasive Species Advisory Council (AISAC) est. by Gov. Napolitano
 - Loss only below \$10.0 m annual due to lower cotton output
 - Important component of sustainability strategy
 - Economic imperative in Arizona to control whitefly

STRODUCTION OBJECTIVES BACKGROUND ECONOMIC MODEL DATA SIMULATION RESULTS CONCLUSION ○●○○ 000000 0 00000 0

WHITEFLY DAMAGE

AN INFESTATION OF B. TABACI...

WHITEFLY CONTROL IN ARIZONA

WHITEFLY PROBLEM

- B-biotype vs Q-biotype
 - Multiphaguous
 - Adaptable to poor host conditions
 - Travels and breeds rapidly
 - Vector for many common plant viruses
 - Develops resistance quickly, increases egg production
- State initiative / budget problems
- Negative externality if not controlled privately
- Need for community-based regulation, or...
- Some system of taxes and / or permits
- How to design institutions / policies?

DOES THE MARKET FAIL?

- Two types of market failure:
 - Negative externality if not controlled privately
 - Weaker-link public good
- Need for community-based regulation, or...
- Some system of taxes and / or permits
- How to design institutions / policies?

OBJECTIVES

• To determine which market-based control method is preferred for whitefly in Arizona

POLICY SOLUTIONS

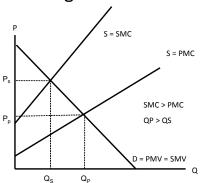
WHY MARKET-BASED SOLUTION?

- Complexity of problem
- 2 Weaker-link public good nature of environment
- 6 Generate efficient outcome
- Provide incentives to innovate

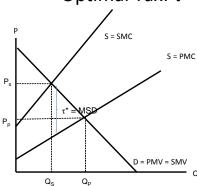
Taxes versus Permits

- Taxes and Permits equivalent tools (Baumol and Oates, 1988)
- Weitzman (1974) shows taxes preferred under cost uncertainty
 - If MSB flat and MSC steep, then taxes preferred
 - If MSB steep and MSC flat, then permits preferred
- Taxes fix level of MSD, permits fix level of control
- Hoel and Karp (2001); Newell and Pizer (2003) in dynamic model
- Both prefer price-based regulation for pollution abatement (GHG)

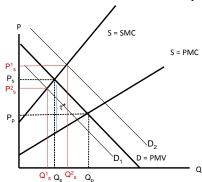
Negative Externality



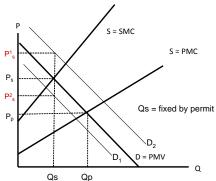
Optimal Tax: τ*



Demand Uncertainty: Tax



Demand Uncertainty: Permits



INTRODUCTION OBJECTIVES BACKGROUND ECONOMIC MODEL DATA SIMULATION RESULTS CONCLUSION
00000 0 00000 0 00000 0

Invasive Species Case

SPATIAL-TEMPORAL PROBLEM

- Invasive species case fundamentally different
- Uncertainty in arrival and dispersion
- Uncertainty on MSB side, not MSC
- Spatial movement adds dimension of uncertainty
- Hypothesis: quantity-based regulation preferred for invasive species

INTRODUCTION OBJECTIVES BACKGROUND ECONOMIC MODEL DATA SIMULATION RESULTS CONCLUSION
000000 0 00000 0 00000 0

Invasive Species Case

SPATIAL EXTERNALITY

- Each location represents one grower
- Each location provides host habitat
- Grower doesn't take into account insects that migrate
- Migration raises costs for neighbors
- Total population growth faster with migration
- Weaker-link public good problem

SPATIAL-TEMPORAL OPTIMIZATION

SOCIAL PLANNER'S OBJECTIVE

$$V^{s} = \underset{x_{st}}{\text{Max}} \int_{0}^{\infty} e^{-\delta t} \sum_{s \in \theta} [(p_{t} - c_{st})y(b_{st}) - D(ND_{s}(b_{1t}, b_{2t}, ..., b_{St})) - k(b_{st}, x_{st})]dt$$

- $p_t = \text{cotton price}$,

$$V^{s} = \underset{x_{st}}{\text{Max}} \int_{0}^{\infty} e^{-\delta t} \sum_{s \in \theta} [(p_{t} - c_{st})y(b_{st}) - D(ND_{s}(b_{1t}, b_{2t}, ..., b_{St})) - k(b_{st}, x_{st})]dt$$

- $p_t = \text{cotton price}$,
- $c_{st} = \text{marginal cost of production at location } s$, time t,

$$V^{s} = \sum_{\substack{x_{st} \\ x_{st}}} \int_{0}^{\infty} e^{-\delta t} \sum_{s \in \theta} [(p_{t} - c_{st})y(b_{st}) - D(ND_{s}(b_{1t}, b_{2t}, ..., b_{St})) - k(b_{st}, x_{st})]dt$$

- $p_t = \text{cotton price}$,
- $c_{st} = \text{marginal cost of production at location } s$, time t,
- $y_{st} = \text{cotton yield}$,

$$V^{s} = \underset{x_{st}}{\text{Max}} \int_{0}^{\infty} e^{-\delta t} \sum_{s \in \theta} [(p_{t} - c_{st})y(b_{st}) - D(ND_{s}(b_{1t}, b_{2t}, ..., b_{St})) - k(b_{st}, x_{st})]dt$$

- $p_t = \text{cotton price}$,
- $c_{st} = \text{marginal cost of production at location } s$, time t,
- $y_{st} = \text{cotton yield}$,
- $b_{st} = \text{insect population}$,

$$V^{s} = \sum_{\substack{x_{st} \\ x_{st}}} \int_{0}^{\infty} e^{-\delta t} \sum_{s \in \theta} [(p_{t} - c_{st})y(b_{st}) - D(ND_{s}(b_{1t}, b_{2t}, ..., b_{St})) - k(b_{st}, x_{st})]dt$$

- $p_t = \text{cotton price}$,
- $c_{st} = \text{marginal cost of production at location } s$, time t,
- $y_{st} = \text{cotton yield}$,
- $b_{st} = \text{insect population}$,
- D() = external damage function,

$$V^{s} = \underset{x_{st}}{\text{Max}} \int_{0}^{\infty} e^{-\delta t} \sum_{s \in \theta} [(p_{t} - c_{st})y(b_{st}) - D(ND_{s}(b_{1t}, b_{2t}, ..., b_{St})) - k(b_{st}, x_{st})]dt$$

- $p_t = \text{cotton price}$,
- $c_{st} = \text{marginal cost of production at location } s$, time t,
- $y_{st} = \text{cotton yield}$,
- $b_{st} = \text{insect population}$,
- D() = external damage function,
- k = control cost function,

• Subject to:

$$\frac{\partial b_{st}}{\partial t} = g_{st}(b_{st}) + ND_s(b_{1t}, b_{2t}, ..., b_{St}) - x_{st}$$

• $g_{st} = \text{growth function}$:

$$g_{st}(b_{st}) = r_s b_{st} (1 - b_{st}/K_s),$$

$$ND_s(b_{1t}, b_{2t}, ..., b_{St}) = \sum_{j=1}^{S} d_{js}b_{jt},$$

• Subject to:

$$\frac{\partial b_{st}}{\partial t} = g_{st}(b_{st}) + ND_s(b_{1t}, b_{2t}, ..., b_{St}) - x_{st}$$

• $g_{st} = \text{growth function}$:

$$g_{st}(b_{st}) = r_s b_{st} (1 - b_{st}/K_s),$$

$$ND_s(b_{1t}, b_{2t}, ..., b_{St}) = \sum_{j=1}^{S} d_{js}b_{jt},$$

• Subject to:

$$\frac{\partial b_{st}}{\partial t} = g_{st}(b_{st}) + ND_s(b_{1t}, b_{2t}, ..., b_{St}) - x_{st}$$

• $g_{st} = \text{growth function}$:

$$g_{st}(b_{st}) = r_s b_{st} (1 - b_{st}/K_s),$$

$$ND_s(b_{1t}, b_{2t}, ..., b_{St}) = \sum_{j=1}^{S} d_{js}b_{jt},$$

- $d_{js} = \text{net dispersion from } j \text{ to } s$,

• Subject to:

$$\frac{\partial b_{st}}{\partial t} = g_{st}(b_{st}) + ND_s(b_{1t}, b_{2t}, \dots, b_{St}) - x_{st}$$

• $g_{st} = \text{growth function}$:

$$g_{st}(b_{st}) = r_s b_{st} (1 - b_{st}/K_s),$$

$$ND_s(b_{1t}, b_{2t}, ..., b_{St}) = \sum_{j=1}^{S} d_{js}b_{jt},$$

- $d_{js} = \text{net dispersion from } j \text{ to } s$,
- $r_s = \text{growth rate}, K_s = \text{carrying capacity of environment}$

• Subject to:

$$\frac{\partial b_{st}}{\partial t} = g_{st}(b_{st}) + ND_s(b_{1t}, b_{2t}, \dots, b_{St}) - x_{st}$$

• $g_{st} = \text{growth function}$:

$$g_{st}(b_{st}) = r_s b_{st} (1 - b_{st}/K_s),$$

$$ND_s(b_{1t}, b_{2t}, ..., b_{St}) = \sum_{j=1}^{S} d_{js}b_{jt},$$

- $d_{js} = \text{net dispersion from } j \text{ to } s$,
- $r_s = \text{growth rate}, K_s = \text{carrying capacity of environment}$
- Spatial-temporal model of Sanchirico and Wilen (2005, 2008)

SPATIAL-TEMPORAL MOVEMENT

- Elements of dispersion matrix (d_{sj}) estimated with Fick's Law
- Fick's Law:

$$b_{st} = b_{s_0 t_0} \left(\frac{e^{-q^2/4Gt}}{2\sqrt{\pi Gt}} \right)$$

- G = dispersion rate,

- Elements of dispersion matrix (d_{sj}) estimated with Fick's Law
- Fick's Law:

$$b_{st} = b_{s_0 t_0} \left(\frac{e^{-q^2/4Gt}}{2\sqrt{\pi Gt}} \right)$$

- G = dispersion rate,
- q = Euclidean distance between locations,

- Elements of dispersion matrix (d_{sj}) estimated with Fick's Law
- Fick's Law:

$$b_{st} = b_{s0t0} \left(\frac{e^{-q^2/4Gt}}{2\sqrt{\pi Gt}} \right)$$

- G = dispersion rate,
- q = Euclidean distance between locations,
- $b_{s_0t_0}$ = starting value at location s and time t

SPATIAL-TEMPORAL MOVEMENT

- Elements of dispersion matrix (d_{sj}) estimated with Fick's Law
- Fick's Law:

$$b_{st} = b_{s0t0} \left(\frac{e^{-q^2/4Gt}}{2\sqrt{\pi Gt}} \right)$$

- G = dispersion rate,
- q = Euclidean distance between locations,
- $b_{s_0t_0}$ = starting value at location s and time t
- Implies insects normally distributed at time t and distance q

- Elements of dispersion matrix (d_{sj}) estimated with Fick's Law
- Fick's Law:

$$b_{st} = b_{s0t0} \left(\frac{e^{-q^2/4Gt}}{2\sqrt{\pi Gt}} \right)$$

- G = dispersion rate,
- q = Euclidean distance between locations,
- $b_{s_0t_0}$ = starting value at location s and time t
- Implies insects normally distributed at time t and distance q
- Allow d_{si} to be random to reflect uncertainty in movement

FIRM'S OBJECTIVE

• Privately-optimal control:

$$V^{p} = \underset{x_{st}}{Max} \int_{0}^{\infty} e^{-\delta t} [(p_{t} - c_{st})y(b_{st}) - k(b_{st}, x_{st})] dt$$

- Not additive over spatial locations

PRIVATE SOLUTION

FIRM'S OBJECTIVE

• Privately-optimal control:

$$V^{p} = \underset{x_{st}}{Max} \int_{0}^{\infty} e^{-\delta t} [(p_{t} - c_{st})y(b_{st}) - k(b_{st}, x_{st})] dt$$

- Not additive over spatial locations
- Include elements that reflect policy tools:
 - Tax: $\tau_{st}(ND_s)$ = location-specific tax = MSB MSC,
 - Permit Price: $\pi_{st}(ND_s)$ = solve for permit price with fixed b_{st}

PLANNER'S PROBLEM

• Population levels:

$$b_{st}^* = (K_s/r_s)(x_{st} - \sum_{j \neq s} d_{st}b_{jt} - d_{ss} - 1)$$

Control level

$$x_{st}^* = (1/k_{xb})(((p_t - c_{st})y_b - \sum_j D'(ND_{bj}) - k_b + k_x(r_s(1 - b_{st}/K_s - r_s(b_{st}/K_s) + \delta + \sum_j d_{sj}) + k_{xb}(r_s b_{st}(1 - b_{st}/K_s) + \sum_{j \neq s} d_{sj}b_{st})$$

Multiplier

$$\lambda_{st}^* = (1/\delta)(((p_t - c_{st})y_b - \sum_j D'(ND_{bj}) - k_b + k_x(g_b + ND_b + \delta) - \sum_{j \neq s} k_x d_{sj})$$

PLANNER'S PROBLEM

• Population levels:

$$b_{st}^* = (K_s/r_s)(x_{st} - \sum_{j \neq s} d_{st}b_{jt} - d_{ss} - 1)$$

• Control level:

$$x_{st}^* = (1/k_{xb})(((p_t - c_{st})y_b - \sum_j D'(ND_{bj}) - k_b + k_x(r_s(1 - b_{st}/K_s - r_s(b_{st}/K_s) + \delta + \sum_j d_{sj}) + k_{xb}(r_s b_{st}(1 - b_{st}/K_s) + \sum_{j \neq s} d_{sj}b_{st})$$

$$\lambda_{st}^* = (1/\delta)(((p_t - c_{st})y_b - \sum_j D'(ND_{bj}) - k_b + k_x(g_b + ND_b + \delta) - \sum_{j \neq s} k_x d_{sj})$$

PLANNER'S PROBLEM

• Population levels:

$$b_{st}^* = (K_s/r_s)(x_{st} - \sum_{j \neq s} d_{st}b_{jt} - d_{ss} - 1)$$

• Control level:

$$x_{st}^* = (1/k_{xb})(((p_t - c_{st})y_b - \sum_j D'(ND_{bj}) - k_b + k_x(r_s(1 - b_{st}/K_s - r_s(b_{st}/K_s) + \delta + \sum_j d_{sj}) + k_{xb}(r_sb_{st}(1 - b_{st}/K_s) + \sum_{j \neq s} d_{sj}b_{st})$$

• Multiplier:

$$\lambda_{st}^* = (1/\delta)(((p_t - c_{st})y_b - \sum_j D'(ND_{bj}) - k_b + k_x(g_b + ND_b + \delta) - \sum_{j \neq s} k_x d_{sj})$$

- Follow Newell and Pizer (2003) in comparing tax / permit results
- Difference in expected net benefits

$$\Delta_t = E[V_{t,tax}^p] - E[V_{t,permit}^p]$$

- Conduct Monte Carlo simulation over random d_{sj} values
- Conduct sensitivity analysis with respect to:
 - $\partial y_{st}/\partial b_{st} = \text{slope of MSB function},$
 - $\partial k/\partial x_{st}$ = slope of MSC function
- Result provides intuition comparable to Weitzman (1974); Hoel and Karp (1998); Newell and Pizer (2003)

- Follow Newell and Pizer (2003) in comparing tax / permit results
- Difference in expected net benefits:

$$\Delta_t = E[V_{t,tax}^p] - E[V_{t,permit}^p]$$

- Follow Newell and Pizer (2003) in comparing tax / permit results
- Difference in expected net benefits:

$$\Delta_t = E[V_{t,tax}^p] - E[V_{t,permit}^p]$$

- Conduct Monte Carlo simulation over random d_{sj} values

- Follow Newell and Pizer (2003) in comparing tax / permit results
- Difference in expected net benefits:

$$\Delta_t = E[V_{t,tax}^p] - E[V_{t,permit}^p]$$

- Conduct Monte Carlo simulation over random d_{sj} values
- Conduct sensitivity analysis with respect to:
 - $\partial y_{st}/\partial b_{st} = \text{slope of MSB function},$
 - $\partial k/\partial x_{st}$ = slope of MSC function,

- Follow Newell and Pizer (2003) in comparing tax / permit results
- Difference in expected net benefits:

$$\Delta_t = E[V_{t,tax}^p] - E[V_{t,permit}^p]$$

- Conduct Monte Carlo simulation over random d_{si} values
- Conduct sensitivity analysis with respect to:
 - $\partial y_{st}/\partial b_{st} = \text{slope of MSB function},$
 - $\partial k/\partial x_{st} = \text{slope of MSC function},$
- Result provides intuition comparable to Weitzman (1974); Hoel and Karp (1998); Newell and Pizer (2003)

Data Description

WHITEFLY SPATIAL DATA

- ARS-USDA insecticide trial data
- Brawley, CA experimental plot: 5 x 5 grid
- 13 weeks in 1994, 13 weeks in 1995
- Estimate elements of Fick's Law / Growth with MLE
- Solve for steady-state values of: $x_{st}, b_{st}, \lambda_{st}$ and π_{st}
- We use 3 x 3 sub-grid to simplify problem

SOCIAL VS PRIVATE SOLUTION

Table 1. Base-Case Solution: Social and Private Optima

Social Optimal			Private Optimal				
$x^{s}(1,1)$	4.000	$b^{s}(1,1)$	6.687	$x^p(1,1)$	4.960	$b^{p}(1,1)$	10.095
$x^{s}(1,2)$	3.876	$b^{s}(1,2)$	6.366	$x^{p}(1,2)$	4.800	$b^{p}(1,2)$	9.759
$x^{s}(1,3)$	3.420	$b^{s}(1,3)$	5.814	$x^{p}(1,3)$	4.240	$b^{p}(1,3)$	8.900

- Results show steady-state solutions in social / private optimum
- Values below observed values
- Social lower than private

Taxes versus Permits

Table 2. Value of Net Benefit Under Taxes and Permits

	V^p	σ	Min	Max	t-ratio
Taxes	742.38	89.45	636.30	964.96	-16.351
Permits	$1,\!524.90$	478.57	794.36	$2,\!304.00$	

- Permits preferred to taxes in invasive species case
- Opposite to GHG regulation example of Newell and Pizer (2003)

Table 3. Effect of Slope of MSB on Taxes vs Permits

		Tax	Permits		
y_b	V^p	σ_{V^p}	V^p	σ_{V^p}	
2.500	527.06	55.64	1,532.20	573.42	
3.500	634.58	71.42	1,533.60	531.17	
4.656	742.38	89.45	1,524.90	478.57	
5.500	809.53	102.53	1,510.70	440.18	
6.500	876.01	118.06	$1,\!483.80$	396.41	

- Steeper MSB favors taxes
- Opposite to emissions control example

Comparative Dynamics

Table 4. Effect of Slope of MSC on Taxes vs Permits

		Tax	Permits		
k_x	V^p	σ_{V^p}	V^p	σ_{V^p}	
0.050	553.00	71.67	913.49	280.58	
0.075	636.20	79.92	1,151.30	358.27	
0.101	742.38	89.45	1,524.90	478.57	
0.125	855.17	96.27	2,016.30	639.64	
0.150	982.36	100.94	2,697.70	865.82	

- Steeper MSC favors permits
- Again, opposite to emissions problem

Taxes or Permits

Conclusions

- Permits preferred to taxes for whitefly control in AZ
- Conditions opposite to emissions abatement case:
 - Steeper MSB favors taxes
 - Steeper MSC favors permits
- Opposite conditions from emissions case
- Possible to design quantity-based whitefly regulation
- Community-based initiatives consistent with model