Strategic Agent Behavior with an Invasive Weed

J.M. Chermak
K. Krause
K.M. Grimsrud
J. Thacher
UNM

D. Schimmelpfennig
ERS

J.K. Hansen
NPS

Invasive Species Management: 2009 PREISM Workshop
Washington, DC
October 22, 2009
Will agents manage an invasive species before it becomes an economic problem?

What is the optimal strategy?

How do neighbors’ actions impact decisions?

Are incentives provided?
RESEARCH PLAN

• Focus on invasive weeds in NM that are not yet an economic problem
 - Russian Knapweed
 - Yellow Starthistle
Russian Knapweed

Yellow Starthistle

Source: http://plants.usda.gov
RESEARCH PLAN

• Focus on invasive weeds in NM that are not yet an economic problem
 - Russian Knapweed
 - Yellow Starthistle

• Focus specifically on cattle ranching
NUMBER OF RANCHES

Number of Ranches
- < 100
- > 300
RESEARCH PLAN

• Focus on invasive weeds in NM that are not yet an economic problem
 - Russian Knapweed
 - Yellow Starthistle

• Focus specifically on cattle ranching

• Employ a multi-faceted approach
 - Theoretical and Numerical Modeling
 - Surveys
 - Economic Experiments
 - Numerical Modeling
DYNAMIC NON-COOPERATIVE GAME

Agent i’s Problem
Maximize Net Benefits:

$$J_i \left(\theta_{i,0}; \left[w_i(t), w_j(t) \right]^T \right) = \int_{t=0}^{T} e^{-rt} \left[B_i(\theta_i(t), w_i(t); A_i) \right] dt$$

subject to:

$$\dot{\theta}_i(t) = f_i \left(g_i(\theta(t)), w(t), \psi \right), \theta_i(0) = \theta_{i,0}$$

where:

- i,j private agents (ranchers) (i does not equal j),
- $\theta_i(t)$ defines i’s stock of the invasive species (state),
- $w_i(t)$ denotes the management effort of agent i during t (control),
- A_i is a vector of i’s characteristics, and
- ψ is the effectiveness of management.
Each agent observes the current conditions and chooses the optimal management level consistent with

\[\omega_i(t) = \eta_i(\theta_i(t)). \]

A Nash equilibrium occurs if

\[
J_i\left(\theta_{i,0}; \left[\eta_i^*(\theta_i(t)), \eta_j^*(\theta_j(t))\right]_{t=0}^T\right) \geq J_i\left(\theta_{i,0}; \left[\eta_i(\theta_i(t)), \eta_j(\theta_j(t))\right]_{t=0}^T\right)
\]

At this level of generality we can say little concerning the characteristics of the optimal effort path for an individual agent.

Specific functional form - three models:

Open-loop
Closed-loop, open-form (dynamic simulations)
Closed-loop, closed form (LQ form)
Base Case Results (closed-loop, open-form)

Effort

![Effort Graph](image)

Infestation

![Infestation Graph](image)

<table>
<thead>
<tr>
<th>Initial Infestation (%)</th>
<th>Percent of Initial Infestation Eradicated</th>
<th>NPV ($)</th>
<th>Average Cost of Effort ($/Acre)</th>
<th>Cost Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>90</td>
<td>714.10</td>
<td>2.92</td>
<td>0.00</td>
</tr>
<tr>
<td>20</td>
<td>95</td>
<td>712.75</td>
<td>8.23</td>
<td>0.00</td>
</tr>
<tr>
<td>30</td>
<td>87</td>
<td>552.36</td>
<td>16.20</td>
<td>0.00</td>
</tr>
<tr>
<td>40</td>
<td>83</td>
<td>427.06</td>
<td>27.21</td>
<td>0.00</td>
</tr>
<tr>
<td>50</td>
<td>78</td>
<td>271.27</td>
<td>41.18</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Low Carrying Capacity

<table>
<thead>
<tr>
<th>Initial Infestation (%)</th>
<th>Percent Initial Infestation Eradicated Low CC</th>
<th>Percent Initial Infestation Eradicated Base CC</th>
<th>Difference in Initial Period Eradication</th>
<th>NPV ($) Low CC</th>
<th>NPV ($) Base CC</th>
<th>Difference NPV ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>80</td>
<td>90</td>
<td>-10</td>
<td>100.37</td>
<td>714.10</td>
<td>-613.73</td>
</tr>
<tr>
<td>20</td>
<td>75</td>
<td>95</td>
<td>-20</td>
<td>50.60</td>
<td>712.75</td>
<td>-662.15</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>87</td>
<td>-87</td>
<td>25.92</td>
<td>552.36</td>
<td>-526.44</td>
</tr>
</tbody>
</table>
Asymmetric Agents

<table>
<thead>
<tr>
<th>Initial Infestation (%)</th>
<th>Percent of Initial Infestation Eradicated</th>
<th>NPV ($)</th>
<th>Average Cost of Effort ($/Acre)</th>
<th>Cost Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Min</td>
</tr>
<tr>
<td>i j</td>
<td>i j</td>
<td>i J</td>
<td>I j</td>
<td>i j</td>
</tr>
<tr>
<td>10 20</td>
<td>90 90</td>
<td>714.10 647.84</td>
<td>2.94</td>
<td>8.77</td>
</tr>
<tr>
<td>10 30</td>
<td>80 83</td>
<td>711.00 553.97</td>
<td>3.03</td>
<td>15.98</td>
</tr>
<tr>
<td>10 40</td>
<td>100 75</td>
<td>708.67 431.24</td>
<td>3.30</td>
<td>26.58</td>
</tr>
<tr>
<td>10 50</td>
<td>100 72</td>
<td>707.86 278.56</td>
<td>3.34</td>
<td>40.27</td>
</tr>
</tbody>
</table>
Summary of Numerical Results

Baseline:
• Can manage infestation, high initial effort optimal

Low CC
• Infestation < 30%, can manage
• Infestation > 30%, no optimal management solution
• Increased time horizon results in higher infestation level solutions

Asymmetric Agents
• High infestation agent realizes positive externalities from low infestation agent
• Low infestation agent needs to exert more effort

Do ranchers follow optimal strategies?
SURVEY
Choice Question Example

<table>
<thead>
<tr>
<th></th>
<th>Russian Knapweed</th>
<th>Yellow Starthistle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction in carrying capacity if not managed</td>
<td>5 %</td>
<td>15 %</td>
</tr>
<tr>
<td>Probability infestation spreads to area ranches, if not managed</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Percent of area ranches managing this weed</td>
<td>50 %</td>
<td>90 %</td>
</tr>
<tr>
<td>Degree of infestation in local area</td>
<td>Medium</td>
<td>Light</td>
</tr>
<tr>
<td>Total weed management cost</td>
<td>$100 0</td>
<td>$250 0</td>
</tr>
</tbody>
</table>

I would be more likely to: **Check one**

1. Manage the Yellow Starthistle infestation
2. Manage the Russian Knapweed infestation
3. Not manage either infestation
4. Manage both infestations

Attribute Levels:

- Carrying Capacity: 5%, 15%, 30%
- Probability Spread: Low, Medium, High
- Percent Others Managing: 10%, 50%, 90%
- Local Infestation: Light, Medium, Heavy
Example Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>All data</th>
<th></th>
<th></th>
<th>RK/YS choices only</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate</td>
<td>Std Err</td>
<td>P-values</td>
<td>Estimate</td>
<td>Std Err</td>
<td>P-values</td>
</tr>
<tr>
<td>Russian Knapweed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ArealInfest: Heavy</td>
<td>0.34</td>
<td>0.11</td>
<td><0.01</td>
<td>0.47</td>
<td>0.18</td>
<td>0.01</td>
</tr>
<tr>
<td>ArealInfest: Medium</td>
<td>0.33</td>
<td>0.11</td>
<td><0.01</td>
<td>0.24</td>
<td>0.18</td>
<td>0.19</td>
</tr>
<tr>
<td>(\alpha_{RK})</td>
<td>0.057</td>
<td>0.11</td>
<td>0.60</td>
<td>0.16</td>
<td>0.16</td>
<td>0.34</td>
</tr>
<tr>
<td>Yellow Starthistle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ArealInfest: Heavy</td>
<td>0.047</td>
<td>0.107</td>
<td>0.66</td>
<td>0.11</td>
<td>0.18</td>
<td>0.56</td>
</tr>
<tr>
<td>ArealInfest: Medium</td>
<td>-0.035</td>
<td>0.108</td>
<td>0.74</td>
<td>0.16</td>
<td>0.18</td>
<td>0.37</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Othr)</td>
<td>0.037</td>
<td>0.010</td>
<td><0.01</td>
<td>0.052</td>
<td>0.017</td>
<td><0.01</td>
</tr>
<tr>
<td>(Othr^2)</td>
<td>-0.0017</td>
<td>0.0042</td>
<td>0.68</td>
<td>-0.010</td>
<td>0.0075</td>
<td>0.15</td>
</tr>
<tr>
<td>Sprd: High</td>
<td>0.22</td>
<td>0.077</td>
<td><0.01</td>
<td>0.48</td>
<td>0.12</td>
<td><0.01</td>
</tr>
<tr>
<td>Sprd: Medium</td>
<td>0.17</td>
<td>0.072</td>
<td>0.02</td>
<td>0.32</td>
<td>0.12</td>
<td>0.01</td>
</tr>
<tr>
<td>CCN</td>
<td>0.33</td>
<td>0.034</td>
<td><0.01</td>
<td>0.63</td>
<td>0.062</td>
<td><0.01</td>
</tr>
<tr>
<td>CCN^2</td>
<td>-0.054</td>
<td>0.045</td>
<td>0.22</td>
<td>-0.15</td>
<td>0.073</td>
<td>0.04</td>
</tr>
<tr>
<td>Cost</td>
<td>-0.021</td>
<td>0.0021</td>
<td><0.01</td>
<td>-0.027</td>
<td>0.0035</td>
<td><0.01</td>
</tr>
<tr>
<td>(\alpha_N)</td>
<td>-0.93</td>
<td>0.14</td>
<td><0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha_B)</td>
<td>1.50</td>
<td>0.12</td>
<td><0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N 2602

LogL -2926.61

N 961

LogL -543.18

*, **, and *** denote significant estimates at the 10, 5, and 1 percent levels, respectively.

All continuous variables, \(Othr\) and \(CCN\) are centered.
From the survey we find

Ranchers are:

• more likely to manage the higher the level of infestation
• more likely to manage weeds when their neighbors are
• more likely to manage weeds if not managing negatively impacts neighbors

In addition:

• size of ranching operation matters
• there are regional differences within the state
• share of family income from ranching impacts results
• type of weed matters

How do ranchers act in a multi-round experiment?
Experiment 2 (North West NM)

Ratio of Effort to Infestation
 = 0: no effort
 = 1: effort equals infestation level
 > 1: effort > infestation level
EXP2: G3

Ratio of Effort to Infestation

<table>
<thead>
<tr>
<th>Part</th>
<th>Horizon</th>
<th>Acres</th>
<th>Herd</th>
<th>Graze</th>
<th>Yrs</th>
<th>Age</th>
<th>Gend</th>
<th>Educ.</th>
<th>Eth</th>
<th>Pol</th>
</tr>
</thead>
<tbody>
<tr>
<td>P7</td>
<td>10</td>
<td><50</td>
<td>20</td>
<td>Private</td>
<td>16</td>
<td>64</td>
<td>F</td>
<td><HS</td>
<td>Hisp</td>
<td>Rep</td>
</tr>
<tr>
<td>P8</td>
<td>5</td>
<td><50</td>
<td>10</td>
<td>Private</td>
<td>15</td>
<td>61</td>
<td>F</td>
<td>HS</td>
<td>Ang</td>
<td>Dem</td>
</tr>
<tr>
<td>P9</td>
<td>50</td>
<td>3160</td>
<td>200</td>
<td>Both</td>
<td>10</td>
<td>63</td>
<td>F</td>
<td>HS</td>
<td>Ang</td>
<td>Dem</td>
</tr>
<tr>
<td>P10</td>
<td>5</td>
<td>165</td>
<td>20</td>
<td>Private</td>
<td>35</td>
<td>67</td>
<td>F</td>
<td><HS</td>
<td>Ang</td>
<td>Rep</td>
</tr>
</tbody>
</table>

Round 6 reset infestation level
SUMMARY

<table>
<thead>
<tr>
<th>Factor</th>
<th>Modeling</th>
<th>Survey</th>
<th>Experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Action</td>
<td>Relatively Aggressive</td>
<td>Depends on level of infestation</td>
<td>Varies across participants</td>
</tr>
<tr>
<td>Neighbors’ Actions</td>
<td>If inaction, need to compensate</td>
<td>More likely to act if neighbor acts</td>
<td>Varies across participants</td>
</tr>
<tr>
<td>Strategy</td>
<td>Changes as problem changes</td>
<td>Impacted by infestation, neighbors, location, individual characteristics</td>
<td>Ranges from aggressive to free-riding</td>
</tr>
</tbody>
</table>
CONCLUSIONS

WEED MANAGEMENT PROGRAMS (PRE-ECONOMIC PROBLEM)

• education
• adaptable to heterogeneity
• menu of incentives

ONGOING WORK

• complete experimental analysis
• informed (from surveys and experiments) numerical modeling
• spatial variation
• uncertainty
• changing preferences
• changing characteristics
• group composition
• ….
THANK YOU

jchermak@unm.edu