Price Analysis of Biotech Seed Markets: Bundling, Integration, Patenting, Efficiency, and Market Power

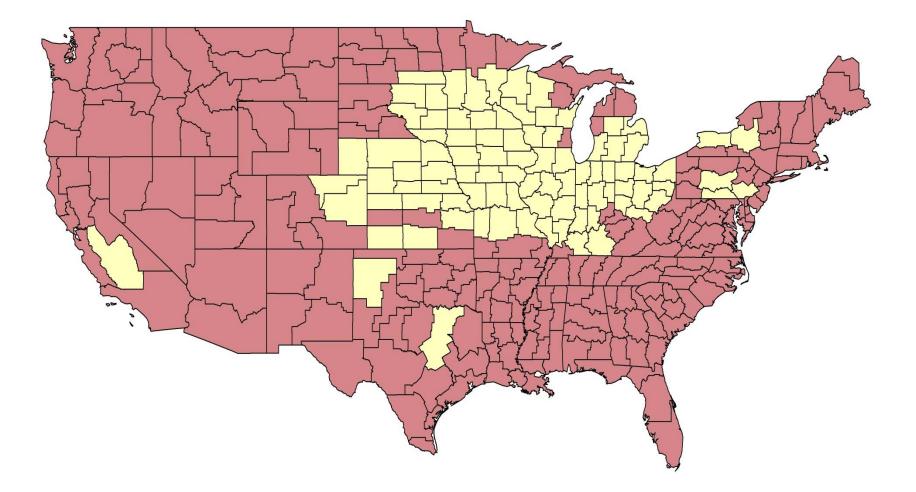
Kyle Stiegert <*Research with Guanming Shi and Jean Paul Chavas*>

University of Wisconsin – Madison

1. Motivations for our work

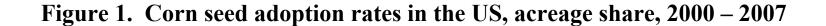
- Bundling, Integration and the exercise of market power
 - Price discrimination opportunities.
 - Optimal bundle strategy (including pricing) depends on
 - Independently valued, complements, or substitutes
 - Heterogeneity in consumers
 - Cost structure (e.g. economies of scope)
 - Power profile

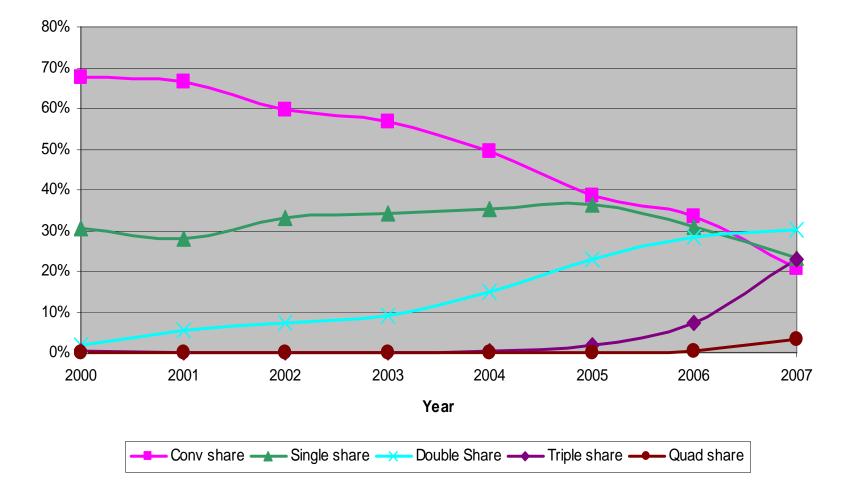
Seed markets?


- Increasing concentration in the seed industry associated with
 - Biotechnology revolution
 - Intellectual Property Protection revolution
 - Mergers
- Genetically modified (GM) seed as a bundle of basic seed and biotech traits

- Single trait, double/triple/quadruple stacking...

3. Data


- Survey data of corn, cotton and soy farmers across the US over the period 2000 to 2007.
- Stratified random sample
 - Weighting scheme constructed using the census data
 - Our analysis focuses on crop reporting districts (CRD) reporting at least 10 farms sampled over the 8 years.


Corn Planting areas in our data, 2000-2007

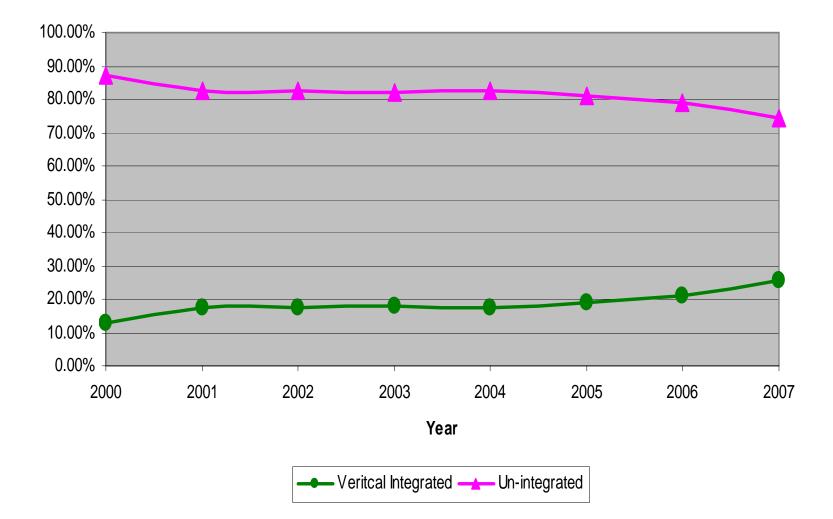
Corn Seed portfolio

- Over 300 seed companies
- 5 (or 6) biotech companies
 - Monsanto, Syngenta, Dow/DuPont, Bayer, and BASF
- Spatially differentiated
 - Local market defined at the CRD level
- Biotech traits
 - Insect resistance traits
 - Bt for European Corn Borer (2)
 - Bt for Rootworm (3)
 - Herbicide tolerance traits
 - Roundup Ready/Glyphosate tolerance
 - Liberty Link
 - Clearfield
 - 2, 3 and 4 stacking systems

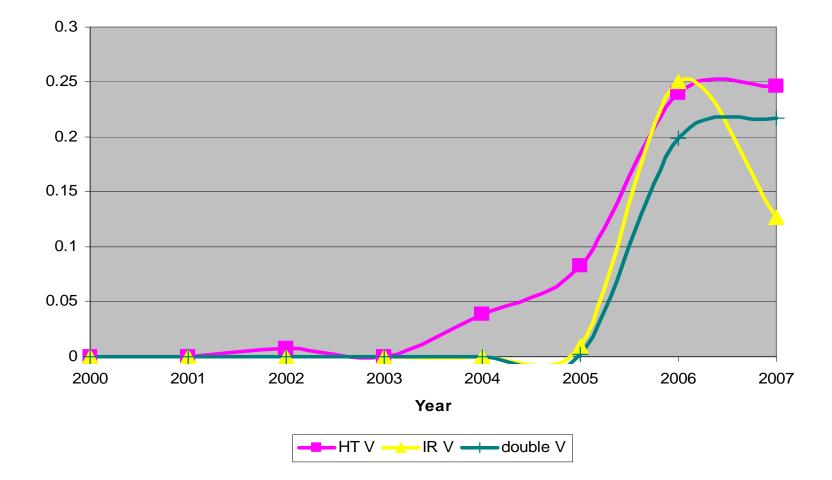
Dependant Var: Net Price (\$/bag)	Coefficient	Robust z statistics	
Market concentration effects			
$H_{11}K_1$	13.13***	5.94	
$H_{22}K_2$	-2.97	-1.02	
$H_{33}K_3$	7.58	0.50	
$H_{44}K_4$	20.11***	5.02	
HH_{12}	17.22	1.52	
HH ₁₃	-58.19	-1.57	
HH ₁₄	35.55**	2.55	
HH ₂₃	-6.85***	-3.54	
HH ₂₄	6.68***	3.56	
HH ₃₄	6.82***	3.27	

Conclusions

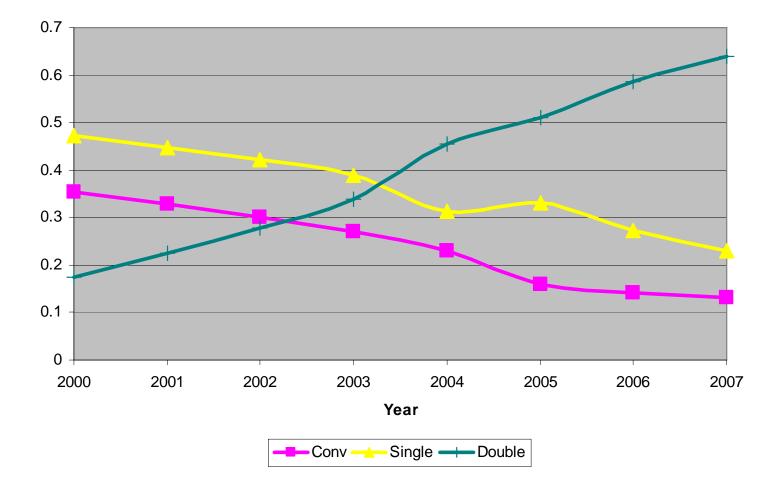
- Strong evidence against component pricing of biotech trait in corn seed market.
- Strong evidence of traditional market powerconcentration in conventional and HT markets.
- Strong evidence of cross product market power effects.
- Evidence of cross product efficiency gains.
- Much evidence of spatial price discrimination.


Estimated Lerner indexes

	Lerner Index (100 × <i>L</i>)	Standard Error	t-ratio
K ₁ (Conventional)	2.25*	1.236	1.818
$K_2 (Bt-ECB)$	-2.06	2.840	-0.724
$K_3 (Bt-RW)$	2.05	7.573	0.271
K_4 (HT1)	21.14***	2.539	8.325
K ₂₃	2.88	5.755	0.500
K ₂₄	14.39***	3.273	4.396
K ₃₄	17.62**	7.614	2.314
K ₂₃₄	15.32**	6.113	2.506


Cotton/Soy Study: Motivation

- Vertical organization vs. exercise of market power
 - Efficiency driven (Chicago School)
 - Market foreclosure (e.g. Whinston 2006)
 - Differentiated products?
 - Limited, mostly assume perfect substitutes and/or monopolist
- Vertical organization and optimal bundling?


Vertical integrated vs. licensed single trait soybean seeds, acreage share 2000-2007.

Vertical integrated **cotton** seeds, acreage (relative) share 2000-2007.

Cotton seed adoption rates in the US, acreage share, 2000 – 2007

Cotton Estimation Results

Seed type effects, benchmark is T ₁ : Conventional Seed		
$T_2 D_\ell$ (HT under licensing)	85.24***	11.71
$T_2 D_v$ (HT under vertical integration)	79.95***	7.37
$T_3 D_\ell$ (IR under licensing)	75.13***	4.95
$T_3 D_v$ (IR under vertical integration)	130.32***	11.46
$T_4 D_\ell$ (stacked seed under licensing)	120.20***	18.81
$T_4 D_v$ (stacked seed under vertical integration)	162.88***	25.09

Market Concentration		
Own: H _{11,ℓℓ} Y _{1ℓ} (on conventional seed)	0.198***	4.41
H _{21,tt} Y _{2t} (on conventional seed), and H _{12,tt} Y _{1t} (on HT1 under licensing)	-0.075	-1.04
$H_{21,\nu\ell} Y_{2\nu}$ (on conventional seed), and $H_{12,\ell\nu} Y_{1\ell}$ (on HT1 under vertical integration)	-0.715***	-3.61
$H_{31,\ell\ell} Y_{3\ell}$ (on conventional seed), and $H_{13,\ell\ell} Y_{1\ell}$ (on IR1 under licensing)	-0.636**	-2.03
$H_{41,\ell\ell}$ $Y_{4\ell}$ (on conventional seed), and $H_{14,\ell\ell}$ $Y_{1\ell}$ (on stacked seed under licensing)	-0.180*	-1.90
H _{22,tv} Y _{2t} (on HT under vertical integration)	4.249***	3.01
Own: H _{22,vv} Y _{2v} (on HT under vertical integration)	4.482***	5.09
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6.824***	3.10

	-5.735***	-3.36
Own: H _{22,ℓℓ} Y _{2ℓ} (on HT under licensing)	0.061	0.39
H _{22,vt} Y _{2v} (on HT under licensing)	1.643***	2.64
$ \begin{array}{c} H_{32,\ell\ell} Y_{3\ell} \ (on \ HT \ under \ licensing), \ and \\ H_{23,\ell\ell} Y_{2\ell} \ (on \ IR \ under \ licensing) \end{array} $	0.937	0.91
$ \begin{array}{c} H_{42,\ell\ell} Y_{4\ell} \ (on \ HT \ under \ licensing), \ and \\ H_{24,\ell\ell} Y_{2\ell} \ (on \ stacked \ seed \ under \ licensing) \end{array} $	-0.495**	-2.45
Own: H _{33,ℓℓ} Y _{3ℓ} (on IR under licensing)	7.573*	1.74
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-2.665***	-3.01
Own: $H_{44,\ell\ell}Y_{4\ell}$ (on stacked under licensing)	1.248***	5.37

Major Findings

- Sub-additivity in stacked seed prices.
- Own-Hs (*H11, ll*, *H22, vv*, *H22, ll*, *H33, ll*, and *H44, ll*): trad. market power is pres.
- Cross Hs involving conv. seed (H21,ℓℓ, H21,vℓ, H31,ℓℓ, H41,ℓℓ):
 complementarities
- HT market cross effects (H22, lv, H22, vl) support substitution, with much stronger effects emanating from vertical int. market.

	Scenario I: from 2002 to 2004		Scenario II: from 2005 to 2006	
	Estimated Effect	Standard Error	Estimated Effect	Standard Error
Conventional	Seed, T ₁			
Total Effect	-4.34***	1.53	-1.70***	0.53
H Effect	0.71	0.98	2.32***	0.50
Y Effect	-5.04***	1.02	-4.02***	0.82
Licensed HT	Biotech Seed, $T_{2\ell}$ N	othing Significant		I
Vertically Int	egrated HT Biotech	Seed, T_{2v}		
Total Effect	-23.33***	7.30	39.80***	7.67
H Effect	11.14	10.41	52.28***	16.53
Y Effect	-34.47**	16.92	-12.47	11.20
Licensed IR	Biotech Seed, T _{3t} Not	hing Significant		I
Licensed HT/	IR Stacked Biotech	Seed, T _{4l}		
Total Effect	12.51	10.20	18.56***	3.09
H Effect	15.69***	5.78	12.99***	5.16
Y Effect	-3.18	6.67	5.57	5.24

Simulations Major Findings

- Subadditivity in stacked market
- Vertical Integration in HT market strongly linked to market power.
- Licensed single trait cottonseed products not a source of market power
- Entry from 2002-2004 had procompetitive effect. Merger in 2005 had anticompetitive effect.
- Y-effects important