Biomass Supply Chain Development in Tennessee

Sam Jackson, Ph.D.

Vice President
Genera Energy LLC
2450 E.J. Chapman Drive
Knoxville, TN 37996
865.974.8258
sjackson@generaenergy.net

Nov. 17, 2010
Tennessee Switchgrass Experience

- Contracting with local farmers to produce 5,100 acres of switchgrass
 - Nearly 2,700 acres harvested in 2009
 - Added >2,400 acres in 2010
 - 1,000 acres improved varieties

- UT/Genera contract with local farmers
 - ~$450/ac/yr for 3 years
 - We provide seed, technical expertise
 - Separate storage contracts
 - Yield-based component in 2010

- Averaging about 8 tons/ac by 3rd year
 - Harvesting ~2 tons in year 1
 - ~5 tons in year 2
 - ~8 tons year 3 and beyond
Switchgrass Contract Farms

- 2008 SFIP Contract
- 2009 SFIP Contract
- 2010 SFIP Contract

Cumberland Roane Rhea Meigs McMinn Monroe Loudon Vonore Knox Blount Polk Bradley Knoxville Biorefinery

Map showing the location of Switchgrass Contract Farms with different colored dots representing the years of the contracts.
Feedstocks for Biofuels

• Feedstock composition/quality is driven by genetics and production systems

• However, feedstock composition/quality can be significantly impacted by proper logistics, storage and handling of material

• Careful management of supply chains can address many feedstock quality concerns
Switchgrass Baling Systems

- **Round bales**
 - Common baler that most farmers have/have access to
 - Varying sizes/densities can cause issues
 - Difficult to achieve axle weights

- **Square bales**
 - More expensive equipment
 - Stacks/stores in a more condensed space
 - Low to medium bulk densities
Biomass Handling, Storage & Transportation

- Year-round supply
- Minimize Individual handling
- Maximize bulk handling
- Minimize storage loss
- Maintain quality
- Manage moisture
- Potentially Increase bulk density
Switchgrass Bale Storage

- Storage critical for quality management
 - Moisture management
 - Large footprint required
 - Dry matter loss does occur

- Significant research underway in bale storage and alternative storage methods
Switchgrass Transport Systems

- Efficiencies in Bale Transport
 - Maximize individual bale densities to reduce transport costs

- Significant labor involved in bale movement
 - Staging, Loading, & Unloading

- Alternative densification and shipping methods need to be considered!
Bale Storage
Biomass Pre-Processing

• Particle size – coarse chop to flour
• Conveyance & flowability
• Energy intensity
• New systems, systems integration
• Multiple feedstocks
• Packaging & transportation
Biomass Handling Today...
High Tonnage Logistics

DOE High Tonnage grant

Project Objectives:

Develop an appropriately-scaled bulk-based switchgrass harvest, handling, storage, compaction, transport, and off-load system to supply a demonstration biorefinery

Determine switchgrass handling efficiencies of the bulk system and identify areas to improve efficiencies with respect to equipment investments and operators

Determine switchgrass quality associated with the bulk system compared to the current bale system based on ethanol production and potential
High Tonnage Logistics

• Issues to better understand
 • In-field logistics
 • Storage impacts
 • Achieving maximum axle weights

• Advantages
 • Reduced preprocessing costs
 • Higher rates of harvest
 • Automated handling
• Optimized Systems will be case dependent
 • Harvest form drives storage and transport methods
 • End use will determine quality and preprocessing requirements

RAPCs will be important to the development of the industry to coordinate logistics and delivery!
Summary

• Improved Efficiencies
 • Reduced supply chain costs
 • Maintain chemical and structural quality of material

• Critical research and development still needed

• Must collaborate across the supply chain to provide simple solutions for bioenergy producers and biomass producers
Thank You!

www.UTbioenergy.org
www.generaenergy.net
sjackson@generaenergy.net