

Harvesting, Handling, Transportation and Storage

Stephen W. Searcy, P.E.

Biological and Agricultural Engineering

Texas A&M University & Texas AgriLife Research

Improving Life through Science and Technology.

- Expertise in machine system development with emphasis on cotton and biomass logistics
- Research is focused on energy sorghum, with some switchgrass and crop residue
- Collaboration with ag machinery companies

- Expected to provide feedstock of
 - Required quantity
 - Required quality
 - Timely delivery
 - -Sustainable cost

We have been mechanically harvesting biomass for decades. There are no significant technical barriers.

True – if you don't care about cost

False – if we want biomass to replace fossil fuels

Cellulosic biomass is all pretty much the same, so the conversion plant will take most anything.

False – Collection, storage and processing operations all impact the biomass quality and energy recovery.

Moisture content doesn't matter much if the haul distances are short.

False – Biomass harvested at 75% MC requires three times as many trips (trucks and drivers) as 25% MC material.

Biomass Supply Chain Operations

Supply Chain Principles

- Improve energy density at every operation
 - Field maximize bulk density
 - Field dry to increase DM concentration
 - Compress to higher density in package
 - Regional maximize energy density
 - Convert to energy form as close to field as possible
 - Leave conversion residues distributed

Supply Chain Principles

- Maintain biomass quality under varying moisture content at harvest
 - Carbohydrates consumed during storage result in lower energy content and higher ash
 - Mold may inhibit biochemical conversion efficiency

Supply Chain Principles

- Minimize machine system cost
 - Extend machine capacity with longer harvest season, higher efficiencies and low labor cost (custom operation model)
 - Take advantage of underutilized resources (individual farm model)

- Packaging method must provide
 - Enhanced handling
 - Extended storage period
 - Provide maximum legal truck loads
 - Minimum labor and load/unload times

Biomass Logistics Selection

The optimum feedstock supply chain is influenced by

Feedstock properties

Local conditions (weather, labor market, etc.)

Conversion process used

Business model

Feedstock Influences

- Crop residues
 - Limited harvest window
 - Uncertain moisture content
 - Constraints of and on primary harvest objective
 - Net yield after conservation requirements uncertain

Feedstock Influences

- Perennial feedstock crops (switchgrass, miscanthus, arundo, etc.)
 - Potentially longer harvest window
 - Dry matter loss more critical since biomass is only source of value
 - High yields and crop physical characteristics influence drying rate

Feedstock Influences

- Annual feedstock crops (energy sorghum)
 - Variety selection allows long harvest season
 - Dry matter loss more critical since biomass is only source of value
 - High yields and crop physical characteristics influence drying rate

Conversion Influences

- Thermochemical
 - Smaller particle size required
 - Moisture content more critical
- Biochemical
 - More forgiving of particle size and moisture content
 - pH can affect enzymatic processes

Business Model Influences

- Custom Harvest Model
 - Farmer grows biomass, contractor schedules and performs all harvest operations
 - Based on high capacity machines, minimal labor
- Farmer Harvest Model
 - Farmer performs all operations
 - Utilizes available resources for low cost

1st Generation Logistics

- High yield may require slower speeds
- High yield can result in poor conditioning
- Harvest efficiency can be reduced
- Difficulty with lodged crops, a frequent occurrence with dedicated energy crops

- Texas energy sorghum
 - Compared four commercial designs
 - All experienced generally similar results

Harvesting Equipment

- Four Windrower/Conditioners
 - MacDon M200 with Auger Header
 - MacDon M200 with Disc Header
 - John Deere 4995 with Flail Conditioner
 - John Deere 4995 with Tri-Lobe Conditioner

*Both MacDon machines had "N bar" conditioner rolls

*Both John Deere machines had rotary disc headers

Results

Avg. Windrow Efficiency

	<u> </u>					
	D3	DF	MA	MD	Cutting Avg.	
Aug 1st Cutting	92.8% B	93.3% AB	95.9% ^A	95.7% A	94.4% ^A	
Aug 2nd Cutting	93.6% B	91.9% B	96.9% ^A	93.4% B	93.9% ^A	
Oct Cutting	82.3% B	72.2% ^c	86.5% AB	88.6% A	82.3% ^c	
Nov Cutting	*	*	82.4% ^A	83.5% ^A	83.0% ^c	
Jan Cutting	88.3% A	#	82.6% A	91.8% A	87.9% ^B	
Machine Avg.	90.8% ^A	88.4% ^B	92.5% A	92.1 % ^A		

Row means with same letter are not significantly different.

* John Deere machines were not available for November cutting.

The Jan Cutting DF area was not sampled from because of lack of machine performance.

- Oklahoma energy sorghum
 - Performed well in standing crop
 - Higher losses when lodging
 - Required two weeks to dry to safe moisture
- Oklahoma switchgrass
 - Performed well in yields of 8+ DMT/ac
 - Achieved 12% MC after only one day

- Texas energy sorghum
 - Used to enhance drying for yield of 10-12
 DMT/ac
 - Performance degraded by uncut stalks and random oriented long stalks
 - First windrow turning 0.25-0.5 mph
 - Subsequent turning 8-10 mph

- Texas large square sorghum bales
 - Generally good performance
 - Difficulty with pickup teeth, attributed mainly to problems with uncut stalks
 - Problems with plugging when windrows are wider than pickup

- Oklahoma large square bales
 - Generally good performance with both sorghum and switchgrass
- Oklahoma large round bales
 - Typically poor bales in switchgrass due to low densities

Baling Power Requirements

Source: Krone Big Pack-Equipment.pdf

Bale Handling

- Equipment developed for hay handling functions equally well with biomass bales
- Capacities may be limited due to bale weights, particularly with high MC
- Time to load a semi-trailer is 20-30 minutes

Telehandlers for Energy Crops?

Source: Krone Big Pack-Handling.pdf

Image source: Krone Big Pack-Shipping & Storage.pdf

Storage

- Excellent work done by Oak Ridge National Lab
- Choice is cost trade off: \$ invested vs.
 \$ lost in DM
- Options range from uncovered storage of round bales to storage buildings
- No significant difference from hay
- Major issue is wet bale storage

- Adequate capacity in current models
- Standing crop row-independent headers
- Field dried crop windrow pickups
- Combines harvest and particle size reduction operations

Storage

Image source: http://www.bridoncordage.com/images/silage_bag.jpg

- Alternatives similar to silage systems with same advantages and disadvantages
- Major additional disadvantage is need to remove from storage and haul to conversion site
- Less than maximum DM loads due to low DM density in trailer

2nd Generation Logistics

Single Pass Harvesting Technologies

Positives

- Allows flexible and selective collection
- Provides greatest percentage of harvestable material
- Can collect stover or cobs only

Negatives

- Reduces harvest capacity of combine
- High in-field logistics needs

Current Production Costs

Production Costs of Viable Systems

2nd Generation – Texas Activities

- Proof of concept with cotton equipment – labor intensive
- Proof of concept packages 4-5 DMT
- Load/unload package in 90 seconds
- Package maintained form after 60 miles of transport
- 85% of material same quality as harvested after 9 month storage

IBSAL Cost Comparison

Summary

- Existing forage and silage systems not likely to meet cost limits
- Optimum systems will be crop, location and conversion process specific
- Second generation logistics systems under development and show promise

Acknowledgements

- US Department of Energy
- Texas AgriLife Research
- MacDon Industries
- CNH
- John Deere
- Stinger
- Hlavinka Equipment
- Potter Tractor
- Bridon Cordage

- Carol Jones Oklahoma
 State
- Matt Darr Iowa State