Alternatives to Quantity-Based Climate Policy

Peter Cramton, University of Maryland Steven Stoft, Global Energy Policy Center

31 January 2011

For details see www.cramton.umd.edu/papers/climate www.global-energy.org

Price Carbon

Roadmap to Global Cooperation

- 1. Avoid cap-or-tax fight
- 2. Avoid problems of Copenhagen
- 3. Replace cap & trade game with pricing + green fund

- 4. How price commitment works
- 5. Cheap & effective
- 6. Oil security, China and climate

(1) Not the Cap-or-Tax Fight

INTERNATIONAL AGREEMENT

Pricing Is Not Taxing

- Under Global Carbon Pricing
 - Every country could use cap and trade
 - With no carbon taxes anywhere !!
 - Or countries can use any mix of cap, tax & feebate they want.

International commitment # National policy

What Do We Want in a Commitment?

- 1. Make cooperation easy
- 2. An easy path to stronger commitments

(2) **COPENHAGEN**

APPENDIX I: QUANTIFIED ECONOMY-WIDE EMISSIONS TARGETS FOR 2020

DEVELOPED COUNTRY	Quantified economy-wide emissions targets for 2020		
	Emissions reduction in 2020	Base year	
	1		

APPENDIX II: NATIONALLY APPROPRIATE MITIGATION ACTIONS OF DEVELOPING COUNTRY PARTIES

DEVELOPING COUNTRY	Actions

The Copenhagen Accord: China

"China will endeavor to lower its carbon dioxide emissions per unit of GDP by 40-45% by 2020 compared to the 2005 level."

- □ DOE (May 2009) estimated 45%
- Previous 15 years China cut intensity 44.4%
- So, 45% is Business as Usual

http://www.global-energy.org/lib/2009/09-08

Copenhagen Accord: India

 India committed to doing half as well as business as usual

 Other developing countries commit to nothing and want subsidies

Developed Countries

- □ All commit to more
- Europe and Japan commit to much more

Everyone agrees there was a polarization of rich and poor countries, starting at Kyoto and now much worse

Why?

(3) A Theory of Cooperation

THE CAP-AND-TRADE GAME

Roadmap to Games

- Public Goods game → Cooperation problems
 - > If abate 50% is best
 - ➤ U.S. self-interest → abate 10%
 - ➤ Canadian self → abate 1%
- □ So, change the game to cap & trade ?
 - ➤ U.S. self-interest → target 17% (buy 9% abroad)
 - ➤ Canadian self → target -6% (sell **C** permits)
- So, change the game to Pricing + Green Fund
 - \rightarrow Self-interest of all \rightarrow P^T that's just right (strong)

First: The Public-Goods Game

- Country i picks an Abatement level, A_i
- To maximize its net benefit =
 benefit from all abatement

minus its own abatement cost

 Even big countries choose an A_i that is about five times too low

The Cap-and-Trade Game

- 1. Countries pick a Target level, T_i
- 2. Maximize the same net benefit *minus*

the cost of carbon permits for $T_i - A_i$

□ How does their target, T_i , compare with their abatement, A_i , in public-goods game?

Polarization Theorem

- Identical countries $\rightarrow T_i = A_i$
 - Targets = Abatement in public-goods game

- Different size countries

 Polarization
 - $-T_i > A_i$ for big countries
 - T_i < A_i for small countries
- Also, there is less total abatement

Rich-Poor Polarization

Cap and trade causes Rich-Poor polarization

Intuition

- Trade → all face the same price of carbon
- High abaters think it's cheap (and do more)
- Low abaters think it's expensive (and do less)

 We can do better with Global Carbon Pricing & Green Fund

An Example World

- Suppose \$30/ton carbon price is optimal
- \mathbf{e} = emissions/capita
- \square avg(e) = world average
- \square low- $e \rightarrow e$ is less than average
- Low-e countries (India) see abatement costs and green funds amplified by avg(e)/e

The Green-Fund Treaty

- 1. Countries vote (name a P_i) for global price
- 2. P^{T} = the *lowest* price named
- 3. Countries pay $G \times$ (above average emissions) Countries receive $G \times$ (below avg emissions)
- 4. $G = 0.036 \times P^{T}$ (G = \$1.10/ton if $P^{T} = $30/\text{ton}$)

So what **P**^T will countries vote for?

Three Country Example

Country	е	Voted P	P*	Benefit	Cost	G.F.
	Ton/cap.	\$/ton	\$/ton	\$/capita/year		ar
U.S.	18	\$26	\$26	\$28	-\$12	-\$4
China	5	\$30	\$26	\$31	-\$14	\$0
India	1.1	\$26	\$26	\$6	-\$2	\$4

- □ \$26 is very close to optimal (\$30)
- Poorest countries gain even without climate benefits!

Our Proposal Adds:

- Green Fund rewards low-e countries for achieving P^T
- Carbon-revenue trading to allow flexibility
- **G** decided politically

(4) For a Better Commitment

FLEXIBLE GLOBAL CARBON PRICING

The Problems: Perverse Incentives

- 1. Caps are risky and unfair
- 2. Poor countries paid not to commit (with CDM projects)
- 3. There is no enforcement
- 4. Polarizing incentives
- 5. 100 unique commitments

A Cap Is Risky

- US wants China to cap itself below its trend line
- □ In 2000, its trend line pointed to 3.5B tons in 2010
- It's BAU turned out to be above 7.0B tons
- □ Commitment to this cap would have meant buying
 3.5B permits on the world market for ~ \$100B
- Committing to a price would mean collecting and keeping \$100B in carbon revenue

Caps Appear Unfair

□ If India accepted a trend line cap, it would be capped at under 1.5 tons/person

That is less than the US emitted in 1880

■ Why should India be capped so low just because others have emitted so much?

Pricing Overview

Two global parameters

- □ Global carbon price target = **P**^T ~ \$30/ton
- □ Global Green-Fund price = G ~ \$2/ton (Clean Development Incentive, CDI)

e = the country's emissions / person

Rule #1: National Policy Flexibility

- Every country could use cap and trade,
- But carbon taxes or a mix are fine

Rule #2: Carbon Price Flexibility

- What if you don't meet the global price target?
 What if you exceed it?
 - Buy/Sell carbon-revenue credits
 - from another country, through a central "market"

Target revenue: $R^* = Emissions \times P^T$

The country must pay $\mathbf{Z} \times (\mathbf{R}^* - \mathbf{R})$, where $\mathbf{Z} \approx 10\%$

#3: Hitting the Carbon Price Target

- \square Higher $Z \rightarrow$ Higher global carbon revenues
- Global Average Price = (total revenues) / (total emissions)
- □ Adjust Z annually

 to make Global Average Price = P^T (the price target)

#4: Green Fund Payments (example)

- World average emissions, avg(e) ≈ 5 tons/capita/year
- Consider a country with e = 10 tons/capita/yr
- \square Assume G = \$2/ton
- □ The country pays $(e avg(e)) \times G$

$$(10 - 5) \times $2 = $10/capita/yr$$

□ A country emitting 1 ton/cap/yr would receive $-(1-5) \times \$2 = \$8/capita/yr$

#5: The Green-Fund Incentive

- It replaces the CDM
- □ It *rewards* cooperation
- □ If a country's carbon price, P, is less than P^T its GF payment is scaled back by P / P^T
- It also rewards information and research programs that are missed by carbon pricing

What Counts as Carbon Pricing?

- 1. Carbon *permits used* under *cap and trade*
- 2. Any tax on fossil fuels
- 3. *Feebates*. E.g. \$1/ton of lifetime auto emissions

But not subsidies or command and control policies

(5) Why Price Carbon?CHEAP AND EFFECTIVE

OPEC: The Best and Worst Climate Policy Ever

U.S. EPA: Carbon Pricing Is Cheap

Abatement Cost = $\frac{1}{2}$ × Price × Abatement

- □ The ½ is because sensible abatements cost between \$0 and the price of carbon
- For several reasons this is likely too high

Example: $P^{T} = $30/t$, G = \$2/t

	Starting Emissions per Capita	Abatement Costs	Green Fund Cost	Total Cost
	(tons/year)	(cents / person / day)		day)
India	1	0.8 ¢	- 1.7 ¢	- 0.9 ¢
Average Country	5	4.1 ¢	0.0 ¢	4.1 ¢
United States	20	16.4 ¢	6.6¢	23.0 ¢

Assumes **emissions reduced by 20%** from values shown. China is close to average.

(7) The U.S. and ChinaOIL SECURITY AND CLIMATE

The Oil-Climate Alignment

□ Using less oil reduces:

GHG emissions

World price of oil

■ Half of IEA's purpose:

To reduce oil use

☐ Half of **Kyoto's** purpose:

How Strong Is the Effect?

- □ MIT on caps: oil price down 34 47% in 2050
- □ IEA on a tight-oil market:

A 1% cut in use \rightarrow a 9% cut in price

□ Six models, including DOE, found *at least*:

A 1% cut in use \rightarrow a 1.5% cut in price

What's It Worth to Save a Barrel?

- □ Cut oil use by 1 barrel when price = \$100
- □ That saves \$100
- And reduces the cost of all other barrels Enough to save \$150
- □ Is this a free lunch?
- No, it's OPEC's lunch

We Need an Oil Consumers' Cartel

"The immediate objective [of the **IEA**] is ... the **consumers' counter-cartel**."

—New York Times, 1974

"the Tokyo [G7] agreement amounts to a consumers' cartel."

—New York Times, 1979

It Could Pay for Climate Policy

20%	Decrease in oil demand by cartel
67 %	Of world oil use covered

	China
\$49 B/year	Imported-oil savings
\$33 B/year	Climate-policy cost

	U.S.
\$41 B/year	Imported-oil savings
\$25 B/year	Climate-policy cost

Conclusion

- 1. Carbon Pricing is *designed* for cooperation
- 2. It does not cap India and China
- 3. One price target, not 100 caps
- 4. No offset payments to *not* cooperate
- 5. Green Fund rewards (1) setting a high target, and (2) meeting that target

Conclusion

- 6. It's easier to comply with(Anyone can tax gasoline)
- 7. It's easier to enforce(Checkups at end of every year)
- 8. Oil savings brings immediate benefits (Not distant and uncertain benefits)