Carbon prices and oil prices

Perry Sadorsky

SSB, York University, Toronto

Prepared for

USDA/NFP/CFTC Workshop on Carbon Market Design: Issues and Opportunities

Washington DC, January 31 – February 1 2011

Background and motivation

 Carbon emissions are a new traded financial instrument. So, a natural question to ask is:

How do carbon prices interact with other financial variables like oil prices, stock prices and interest rates?

Past research

- Recent papers on EU-ETS include:
- E. Alberola, J. Chevallier, B. Cheze, 2008;
- Mansanet-Bataller, M., Pardo, A., Valor, E., 2007;
- E. Benz, S. Truck, 2009;
- J. Chevallier, 2009, 2011;
- E. Alberola, J. Chevallier, B. Cheze, 2008;
- M. Mansanet-Bataller, J. Chevallier, M. Herve-Mignucci, E. Alberola, 2010;

Past research

- Recent paper on CCX is:
- H.S. Kim and W.W. Koo, 2010
- Recent paper on Australia is:
- J. Chevallier, 2010

Objective

 Conduct a multivariable analysis of the dynamic interactions between carbon prices, oil prices, stock prices and interest rates.

Data

- Data on carbon prices (CCX CFI vintage 2003, 100 metric tons of CO2 equivalent), oil prices (WTI futures prices), stock prices (SP500, ECO), and interest rates (3 month T bill).
- On the CCX, earlier dated vintages may be delivered against later vintage trades.

Data

- The Great Recession has caused a structural break so estimation period is, 1/02/2004 7/31/2008 (before the Lehman's bankruptcy).
- CCX trading volume was zero from February 2010 onwards and trading has now ceased.
- Intrade currently predicts a 5% (20%) probability of a cap and trade system being established before midnight Dec 31, 2011 (2013). Perry Sadorsky

Summary statistics (daily data)

	% ∆ CFI2003	%∆WTI	% ∆ SP500	% ∆ ECO	T bill
Mean	0.12	0.11	0.01	0.02	3.28
Median	0.00	0.11	0.05	0.04	3.41
Maximum	18.90	8.08	4.15	6.11	5.19
Minimum	-25.49	-7.70	-3.53	-6.88	0.61
Std. Dev.	3.61	2.01	0.84	1.62	1.46
Skewness	-0.29	0.02	-0.20	-0.19	-0.19
Kurtosis	14.68	3.41	5.38	4.15	1.58
Jarque-					
Bera	6800.77	8.28	289.86	72.57	107.67
Probability	0.00	0.02	0.00	0.00	0.00
Sharpe	0.03	0.01	0.00	0.05	
Nobs	1194	1194	1194	1194	1194

Empirical Approach

- Toda and Yamamoto (1995) Vector Autoregression (VAR) approach.
- Estimate the VAR in levels, use a standard lag length selection criteria to select appropriate lag length, and add additional lags if data contain unit roots or are cointegrated.

VARs

- One VAR for carbon, oil, SP500, interest rate.
- Another VAR for carbon, oil, ECO, interest rate.
- TY approach. LR selects 5 lags (plus one more lag for possible unit roots), so estimate VARs with 6 lags. AR roots less than unity (satisfies stability condition).

Response to Generalized One S.D. Innovations ± 2 S.E.

Response to Generalized One S.D. Innovations ± 2 S.E.

Results

 Carbon prices increase in response to a one standard deviation shock to oil prices. Higher oil prices are associated with a growing economy and more emissions.

Results

- The other financial variables do not respond statistically to shocks to carbon prices.
- A one standard deviation shock to oil prices reduces the S&P 500. This is in agreement with a large literature showing stock prices respond negatively to oil price increases (Sadorsky, 2008).

Results

 A one standard deviation shock to oil prices increases ECO. This is in agreement with the idea that higher oil prices encourage investment in alternative energy. After 4 days, however, the impulse is statistically insignificant.

Results on volatility

 Use a MGARCH(1,1) model (Diagonal vech multivariate GARCH model) to estimate the conditional variances and covariances.

Implications

- These results help to understand price patterns of carbon.
- Oil prices are possibly useful for forecasting carbon prices.
- Hedging opportunities.
- Portfolio diversification (think of carbon as a traded commodity).
- Green portfolios and socially responsible investing.
 Perry Sadorsky

Caveats

- Carbon emissions prices depend upon a vibrant market for carbon emissions. A vibrant market can come about because either
- 1. Companies voluntarily join (CCX)
- 2. Carbon emissions are regulated (EU-ETS)

Caveats

 Joining a voluntary market is useful for learning purposes but ultimately a regulated carbon market is more powerful than a voluntary market so the future of carbon markets depends upon carbon regulation.