Moderating Price Volatility By Adding Market Controls: Unintended Consequences

Andrew Stocking, Ph.D.
Market Design Economist
Congressional Budget Office
January 31, 2011

Not for Citation

The views expressed in this paper are those of the author and should not be interpreted as those of the Congressional Budget Office.
Presentation Outline

Concerns
- Prices will exceed acceptable levels
- Prices will fall and not incent innovation
- Systemic risk
- No transparency
- Allowance bubbles
- Manipulation

Considered Limits
- Price ceiling
- Price Floor
- Prohibit Derivatives
- Prohibit Speculators
For more information

Implementing Price Control Through Supply Management

New Allowances = X

Removed Allowances = X
Price Ceilings and Floors (a.k.a. the Safety Valve)
Behavioral Effects of Price Controls

- Price behavior near the ceiling/floor
 - Krugman, (QJE, 1991)
 - Target zone has stabilizing effect if credible zone

- If not credible: Speculative attacks at exchange rate target zone floor
 - Mexican Peso (Dec 22, 1994), Thai Baht (July 2, 1997), Malaysian Ringgit (July 14, 1997), English Pound (Sept 16, 1992)
 - Volatility near boundary increases as you introduce uncertainty about credibility of government to maintain boundary

- Likely that allowance price ceiling can be credible, given de minimis cost of printing allowances

- Other experience with price controls
 - Tin market collapsed in 1985 because International Tin Council couldn’t maintain the floor
 - Gold prices actually increased faster given potential for unannounced price management (threat of govt release caused extractors and speculators to require a higher rate of return to hold gold)
 - California Electricity Prices (price ceiling)
The Carbon Market Context

- Waxman-Markey (HR2454) - Strategic Reserve
 - Price Ceiling ($28) and Price Floor ($10) rising at 5% real (2009$)

- Kerry-Boxer (S1733) – Market Stability Reserve
 - Price Ceiling ($28) and Floor ($10) escalate at 5% real (KB ceiling 7% after 2017) (2005$)

- Kerry-Lieberman – Cost Containment Reserve
 - Price ceiling ($25) and Floor ($12) rising at 5% and 3% real, respectively (2009$)

- Nature of Supply for maintaining price ceiling
 - Sources of Supply (New / Taken from Future)
 - Size of Release (Limited / Unlimited)
 - Replenishing Allowances taken from future (Replace / Do not Replace)
Price Path Asymmetry

Price

\(p_e \)

\(t_1 \) \hspace{1cm} \(t_2 \) \hspace{1cm} \(t_3 \) \hspace{1cm} \(t_4 \) \hspace{1cm} \(t_5 \)

Time

Price

Supply

\(p_c \)

\(p_e \)

\(p_f \)

Price Ceiling

Price Floor

Marginal Abatement Costs

Emissions
Price Path Asymmetry

Price

Emissions

Marginal Abatement Costs

p_e

$t_1 \ t_2 \ t_3 \ t_4 \ t_5$

Time

Z

Emissions

Z

Z

Z

Z

Z

Supply

Price Ceiling

p_c

P_e

p_e

P_f

Price Floor

Marginal Abatement Costs
Price Path Asymmetry

p_e

t_1 t_2 t_3 t_4 t_5

Z $Z + \Delta$

Marginal Abatement Costs

Price

p_c Price Ceiling

p_e Price Floor

p_f

Supply

Emissions
Price Path Asymmetry

p_e

$t_1 \quad t_2 \quad t_3 \quad t_4 \quad t_5$

Time

$Z + \Delta$

Emissions

Price

p_c

p_e

p_f

Supply

Price Ceiling

Price Floor

Marginal Abatement Costs
Price Path Asymmetry

p_e

$t_1 \quad t_2 \quad t_3 \quad t_4 \quad t_5$

$Z + \Delta$

Price

Supply

Price Ceiling

Price Floor

Marginal Abatement Costs

p_c

p_e

p_f
Price Path Asymmetry
Price Path Asymmetry

- p_e (Price)
- t_1, t_2, t_3, t_4, t_5 (Time)
- $Z + \Delta$ (Emissions)
- p_c (Price Ceiling)
- p_f (Price Floor)
- Extra cost for some allowances
- Savings on remainder of allowances
- Marginal Abatement Costs

Graph showing the price path asymmetry with supply, price ceiling, price floor, and emissions plotted against time.
Application to the carbon market?

- Are there ways to manipulate the market given potential designs of the price ceiling?
 - YES, but depends on specific design
- Is there a financial benefit to be had from manipulating the market?
 - POSSIBLY, depends on conditions, elasticities, and market structure
- Can the manipulation be implemented unilaterally or is a coalition needed?
 - MAYBE, depends on market structure
Deviation Modeling Results

<table>
<thead>
<tr>
<th>Planning Horizon (PH)</th>
<th>No. Allowances Issued Over PH (millions)</th>
<th>Coalition (%)</th>
<th>Deviation (as % of Coalition Demand over PH)</th>
<th>Deviation (as % of Coalition Demand in 1st Yr)</th>
<th>Cost with No Deviation ($ billions)</th>
<th>Cost of Deviation Investment ($ billions)</th>
<th>Cost Under Deviation (excl. dev. Allowances ($ billions))</th>
<th>Annualized Effective Real Return on Deviation Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>15,000</td>
<td>5</td>
<td>10</td>
<td>30</td>
<td>$18</td>
<td>$0.45</td>
<td>$17.7</td>
<td>11-16%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>10</td>
<td>30</td>
<td>$36</td>
<td>$0.90</td>
<td>$33.6</td>
<td>41-46%</td>
</tr>
<tr>
<td>5</td>
<td>25,000</td>
<td>5</td>
<td>10</td>
<td>50</td>
<td>$30</td>
<td>$0.75</td>
<td>$29.0</td>
<td>7-10%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>10</td>
<td>50</td>
<td>$60</td>
<td>$1.50</td>
<td>$56.0</td>
<td>23-26%</td>
</tr>
<tr>
<td>10</td>
<td>50,000</td>
<td>5</td>
<td>10</td>
<td>100</td>
<td>$60</td>
<td>$1.50</td>
<td>$58.0</td>
<td>4-6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>10</td>
<td>100</td>
<td>$120</td>
<td>$3.00</td>
<td>$111.9</td>
<td>12-13%</td>
</tr>
</tbody>
</table>

Price Floor

- Intended to increase the stringency of the cap when the price approaches the floor

- Implementation
 - Introduce new allowances with reserve price (auction)
 - Program administrator stands ready to buy at floor price (credibility issues?)

- Design of the Price Floor
 - Floors rise at a given real rate (5% WM/KB, 3% KL)

Price Floors
(Escalation Rate > Risk Free Rate)

Result: Escalation rate of floor could become large determinant of allowance prices
Price Floors
(Black-Scholes Put Option for Floor Allowances)

Result: Floor does not tighten overall cap, just shifts reductions forward in time.
Part II: Limits to Speculators and Derivatives

Addressing concerns about:
1) Systemic risk;
2) Lack of transparency;
3) Allowance bubbles; and
4) Manipulation

Limiting Market Participation

- **Benefits of speculators**
 - Increased liquidity
 - Lower bid/ask spreads
 - Speculator decision to buy/sell not correlated with covered entity need to buy/sell allowances
 - More information (from diverse sources)
 - Profit from bringing accurate information to the market
 - Holding banked allowances
 - Banked allowances tie up capital
 - Speculators have lower cost of capital (no/limited corporate income taxes) relative to covered entities
Two Firms: Two Capital Costs

Result: Allowance prices expected to rise slower when held by speculator, or firm with lower cost of capital.

Covered Entity Cost of Capital = Competitive Rate + Tax Rate

Speculator Cost of Capital = Competitive Rate

Corporate Tax Wedge
Prohibiting Speculators

- Reduced liquidity and increased volatility
 - If a few participants accounted for large fraction of market, increased ease of manipulation
- Removing class of traders who profit by providing services to market would create profit incentive for remaining traders
 - Or create incentive for excluded traders to purchase small covered entity
- Increased concentration of risk by covered entities could have unintended consequences
- Enforcement difficult
Alternatives to Prohibiting Speculators

- Position limits
 - Expanded use under Dodd-Frank
- Circuit breakers
 - Expanded use following May 6, 2010 flash crash
Limiting Transactions

- Some proposals to limit derivatives
- Benefits of derivatives
 - Allowance derivatives allow covered entities to manage price volatility risk
 - Lower transaction costs than buying allowances and holding them
 - Short sales could dampen/reduce bubble formation
Possible Market Responses to Derivatives Prohibition

- Hedge risk using correlated commodities (e.g., natural gas or oil)
 - Not prefect hedge
 - Introduces other asset variability into allowance prices
- Move allowance derivatives to overseas markets outside U.S. regulatory authority
- Enforcement difficulty
Alternatives to Prohibiting Derivatives

- Reliance on Centralized Clearing
 - Heightened market transparency and stability
- Trading Through Formal Exchanges
 - Increased transparency and standardization
- Increased Regulation of Over-the-Counter Trading
 - Improved tracking
 - Increased margin requirements
Thank you!

All of CBO’s work on climate change is available at:
www.cbo.gov/link/cc
Prices simulated by random draws