

Using Scanner Data To Answer Food Policy Questions

Conference

Wednesday, June 1 - Thursday, June 2, 2011

Economic Research Service 1800 M Street, NW Waugh Auditorium Washington, DC Timothy J. Richards, Stephen F. Hamilton and William Allender

Arizona State University; Cal Poly, San Luis Obispo; and Arizona State University

24th May 2011

RETAIL-WHOLESALE PASS-THROUGH

VARIETY PASS-THROUGH

OVERVIEW

- Research Problem
- Objectives and Contribution
- Econometric Model
- Data Sources and Limitations
- Estimation
- Results and Discussion
- Conclusions

INTRODUCTION

OBJECTIVE

Estimate retail pass-through accounting for endogenous retail assortment decisions

RESEARCH PROBLEM

THEORY OF PASS-THROUGH

- Pass-through rates depend on:
 - Local costs conditions
 - Market competitiveness
 - Price rigidity
 - Demand curvature
- Pass-through is generally less than 100%, except:
 - Oligopoly: Bulow and Pfleiderer (1983); Seade (1987)
 - Multi-product sellers: Hamilton (2009)
 - Demand curvature: E>1, Delipalla and Keen (1992); Anderson, de Palma and Kreider (2001)

EMPIRICAL MODELS OF PASS-THROUGH

- Recent literature
 - Trade: Goldberg and Hellerstein (2007); Hellerstein (2007); Nakamura and Zerom (2010)
 - IO: Kim and Cotterill (2008)
 - Marketing: Dube and Gupta (2008)
- Model attributes:
 - Single-product sellers
 - Commodity prices
- Retail prices are set by retailers that sell many products and face wholesale prices

THEORY OF VARIETY AND PASS-THROUGH

- Retailers can do many things to raise profit if wholesale prices rise:
 - Increase retail prices
 - Reduce quality / package size / cost
 - Reduce breadth of assortment
- Effects:
 - Smaller assortment softens price competition
 - Retail prices rise further
 - Pass-through can be more than 100% (Hamilton, 2009)

CONTRIBUTION

- Endogenize product-line choices
 - Previously: Product assortment decisions considered exogenous
 - Our Model: Assortment and pricing are jointly determined
- Empirical estimate of variety- and price-pass-through
 - Previously: Pass-through for price only
 - Previously: Retail pass-through generally < 100%
 - Our Model: Variety changes associated with pass-through > 100%

RETAIL DATA

OVERVIEW

- Cereal category: 19 top brands
- Scanner data: sales dollars, units, imputed promotion
- 33 months (June 2007 March 2010) for L.A. market
- Six retailers with different assortment / pricing strategies
- Data is IRI Infoscan
- Why cereal?
 - Frequently purchased by large number of households
 - Supply dominated by two firms (Kelloggs and General Mills)
 - Produced from commodity with wide variation in price
 - Frequent changes in assortments / broad assortments

Wholesale Data

- Promodata PriceTrak service
- Covers non-self distributing retailers
- Assume wholesale prices are market price
 - Nakamura and Zerom (2010)
 - Robinson / Patman Act
- Weekly price series
 - Flags price increases
 - Flags manufacturer promotions
- Comprehensive data at brand / UPC level

RESEARCH PROBLEM DATA **ECONOMETRIC MODEL** ESTIMATION RESULTS CONCLUSION 0000 0000000

ECONOMETRIC MODEL

ECONOMETRIC MODEL

OVERVIEW

- Structural Model Retail / Manufacturer Equilibrium
 - Demand Equation: random-parameter nested Logit
 - Consumers choose stores, and then brands of cereal
 - "Supply" Model: retailer pricing and variety
 - Equilibrium Concept: Bertrand-Nash in price and variety
- Estimated with SML (demand) and GMM (supply)
 - Instrumented with input prices, brand indicators on demand side
 - Instrumented with demographics, brand indicators on supply side

RANDOM UTILITY MODEL

Consumer i Chooses Alternative with Highest Utility

$$u_{hijt} = \delta_{hij} + \alpha_h p_{ijt} + f(N_{it}) + \sum_{k=1}^K \beta_k x_{jkt} + \xi_{jt} + \tau_{hijt} + (1 - \sigma)\varepsilon_{hijt},$$

where:

- \mathbf{x}_{jk} = elements of the marketing mix such as promotion, couponing or features
- $oldsymbol{\delta}_{hij}=$ product-and-store specific preference parameter
- N_i = measure of variety (SKU count) per store
- p_{ij} = vector of prices
- ξ_i = effects unobserved by researcher
- σ = heterogeneity or nesting parameter
- $\tau_{hiit} + (1 \sigma)\varepsilon_{hiit} = \text{iid extreme value error term}$

Demand for Variety

- Utility rises in variety
 - Not uncontroversial assumption: Schwartz (2002); Diehl and Poynor (2010); Kuksov and Villas-Boas (2010)
 - Ideal point likely in range of variety offered by supermarkets
 - Concept supported by McAlister and Pessemier (1982); Kim, Allenby and Rossi (2002)
- Assume quadratic function for $f(N_{it})$

$$f(N_{it}) = \gamma_1 N_{it} + 1/2\gamma_2 N_{it}^2,$$

• Expect $\gamma_1 > 0$ and $\gamma_2 < 0$

Unobserved Consumer Heterogeneity

- Estimate random parameter GEV, z_{mh} are HH attributes.
- Marginal utility of income, brand preference, variety preference random:

$$\alpha_h = \alpha_0 + \sum_{m=1}^{M} \alpha_m z_{mh} + \sigma_{\alpha} \nu_h, \ \nu_h \ \tilde{N}(0,1),$$

$$\delta_{hij} = \delta_{0ij} + \sum_{m=1}^{M} \delta_m z_{mh} + \sigma_{\delta} \mu_h, \ \mu_h \ \tilde{\ } N(0,1),$$

$$\gamma_{1h} = \gamma_{10} + \sum_{m=1}^{M} \gamma_{1m} z_{mh} + \sigma_{1\gamma} \kappa_h, \ \kappa_h \ \tilde{\ } N(0,1),$$

RETAILER GAME

- We model three-stage game on the supply-side:
 - Retailers choose assortments conditional on rival prices and observed wholesale prices
 - 2 Retailers compete in prices
 - **3** Consumers choose among stores (6) and brands
- Model the game backward, beginning with consumer demand

RETAILER GAME

 \bullet Profit equation for retailer i:

$$\pi_i = M \sum_{j \in J} s_{ij} (p_{ij} - c_{ij} - w_{ij}) - g(N_i),$$

• Marginal retailing cost:

$$c_{ij}(\mathbf{v}_r) = \sum_{i \in I} \sum_{j \in J} \eta_{ij0} + \sum_{l \in L} \eta_{wl} v_{rl} + \epsilon_{ijr},$$

• Cost of variety:

$$g(N_i) = \lambda_0 + \lambda_1 N_i.$$

EQUILIBRIUM PRICES

- Equilibrium concept is Bertrand / Nash
- First-order conditions with respect to price:

$$\frac{\partial \pi_i}{\partial p_{ij}} = M s_{ij} + M \sum_{k \in J} (p_{ik} - c_{ik} - w_k) \frac{\partial s_{ik}}{\partial p_{ij}} = 0, \ \forall i \in I, \ j \in J,$$

• Written in matrix notation:

$$\mathbf{p} = \mathbf{c} + \mathbf{w} - (\mathbf{\Omega} \mathbf{S}_p)^{-1} \mathbf{s},$$

- Ω = "ownership matrix,"
- $\mathbf{S}_p = \text{matrix of share-derivatives in price}$

EQUILIBRIUM ASSORTMENT

- Equilibrium concept is again Bertrand-Nash in N_i
- Solution captures externalities on own and rival prices:

$$\frac{\partial \pi_i}{\partial N_i} = 0 = M \sum_{j \in J} s_{ij} \frac{\partial p_{ij}}{\partial N_i} + M \sum_{j \in J} (p_{ij} - c_{ij} - w_j) \frac{\partial s_{ij}}{\partial N_i} + M \sum_{l \in I} \sum_{k \in J} (p_{lk} - c_{lk} - w_k) \frac{\partial s_{lk}}{\partial p_{lk}} \frac{\partial p_{lk}}{\partial N_i} - \frac{\partial g_i}{\partial N_i},$$

EQUILIBRIUM ASSORTMENT

• Solve for N_i and write in matrix notation:

$$\mathbf{N} = (1/\lambda_1)(\mathbf{M}\mathbf{s'}\mathbf{P}_N + \mathbf{M}(\mathbf{p} - \mathbf{c} - \mathbf{w})'\mathbf{S}_N + \mathbf{M}(\mathbf{p} - \mathbf{c} - \mathbf{w})'\mathbf{S}_p\mathbf{P}_N),$$

- $\mathbf{P}_N = \text{matrix of price-derivatives in variety}$
- $\mathbf{S}_N = \text{matrix of share-derivatives in variety}$
- $\mathbf{M} = \text{size of the total market.}$

ECONOMETRIC MODEL

FINDING EQUILIBRIUM PASS-THROUGH RATES

- Two options:
 - Simulate price and variety solutions (Kim and Cotterill 2008)
 - 2 Totally differentiate FOC with respect to wholesale prices
- Total differential of retail FOC in prices:

$$\left(\sum_{k \in J} \frac{\partial s_{ik}}{\partial p_{ik}} + \sum_{l \in J} \sum_{k \in J} (p_{il} - c_{il} - w_l) \frac{\partial^2 s_{il}}{\partial p_{ij} \partial p_{ik}} + \sum_{l \in J} \frac{\partial s_{il}}{\partial p_{ij}} \right) \frac{\partial p_{il}}{\partial w_j} +$$

$$\left(\sum_{k \in J} \frac{\partial s_{ik}}{\partial N_i} + \sum_{l \in J} \sum_{k \in J} (p_{il} - c_{il} - w_l) \frac{\partial^2 s_{il}}{\partial p_{ij} \partial N_i} + \sum_{l \in J} \frac{\partial s_{il}}{\partial N_i} \right) \frac{\partial N_i}{\partial w_j} = \frac{\partial s_{ik}}{\partial p_{ij}},$$

- Where:
 - $\partial p_{il}/\partial w_i$ is the retail pass-through rate and,
 - $\partial N_i/\partial w_i$ is the "variety" pass-through rate.

ESTIMATING EQUATIONS

- Totally differentiate variety FOC and solve both to find...
- One big ugly mess (see paper), but we can simplify...
- Retail price pass-through:

$$SP_{ij} = SPP_{ij}\phi + SN_{ij}\theta + \varepsilon_P,$$

and variety-pass-through:

$$SN_{ij} = SPN_{ij}\phi + SNN_{ij}\theta + \varepsilon_N,$$

where:

- •
- SPP_{ij} = first- and second-order share derivatives in price,
- SN_{ij} = first-order share derivatives in variety,
- $SPN_{ij} = \text{share derivatives in price and variety}$,
- SNN_{ij} = first- and second order share derivatives in variety,

ESTIMATION METHOD

- Estimate demand using control function (Petrin and Train 2010)
 - Simulated maximum likelihood.
 - Residuals from IV regression for prices used as explanatory variables
 - Demand IVs: brand indicators, input prices, lagged shares
- Estimate supply with GMM
 - Compare to NLSUR to evaluate need for endogeneity
 - Supply IVs: brand indicators, market demos, lagged margins

OVERVIEW

- Four Sets of Results
 - Specification tests
 - Structural demand parameters
 - Elasticities of demand
 - Supply estimates / pass-through rates

Results

Specification Tests

Table 1: Specification Tests: RP-GEV Model

Test	Estimate	Test Statistic
1. GEV vs Simple Logit	*	
- GEV Scale Parameter	0.768*	216.473
2. Random Parameter		
- LR Test		1,077.322
- Price Response	0.964*	39.047
- Brand Preference	0.412^{*}	32.245
- Variety Response	0.050*	16.527
3. Control Function		
μ	0.608*	2.593
η	-0.001*	-2.793

STRUCTURAL DEMAND ESTIMATES

Table 2: RP-GEV Demand: U.S. Cereal

Variable	Estimate	t ratio
Constant	-11.671*	-42.433
Cheerios	0.131^*	3.776
Cinn. Toast Crunch	0.223^{*}	5.989
Lucky Charms	0.100*	2.408
Corn Flakes	0.154*	3.208
Frosted Flakes	0.234	5.119
Raisin Bran	0.195^{*}	4.989
Special K	0.390*	8.660
Fr. Mini Wheats	0.235^{*}	4.955
Price	-2.800*	-11.100
Variety	25.918*	17.022
Variety ²	-30.259*	-13.964

STRUCTURAL DEMAND ESTIMATES

- Product-specific preference parameters plausible
- Price parameter significant, plausible elasticities (see below)
- Variety effect quadratic
 - Optimal assortment = 428 SKUs
 - Observed = 329 SKUs
 - Retailers not fully exploting assortment effect
- Age and Income
 - Reduce price elasticity
 - Reduce optimal assortment

DEMAND ELASTICITIES

Results

Table 3. Selected Elements of Elasticity Matrix

Cheerios	-2.984	0.127	0.075	0.099	0.143
Cinn. Toast Crunch	0.127	-2.165	0.121	0.145	0.189
Lucky Charms	0.075	0.121	-3.076	0.093	0.137
Corn Flakes	0.099	0.145	0.093	-2.196	0.161
Frosted Flakes	0.143	0.189	0.137	0.161	-1.641

• Note how similar products have higher cross-elasticities

Results

Pass-Through Model Estimates

Table 4. Pass-Through Model Estimates: NLSUR and GMM

	NLSUR		GMM	
Variable	Estimate	t-ratio	Estimate	t-ratio
Constant	0.737	60.316	0.849	3.834
Retailing Wage	-0.458	-30.243	-0.594	-2.458
Health Care	-0.952	-30.146	-1.946	-4.871
Utilities	-0.029	-0.541	1.855	1.759
ϕ	0.730	664.310	1.010	164.498
heta	-8.125	-160.216	-9.655	-53.922
δ_2	-0.016	-51.638	-0.022	-11.799
LLF	$3,\!567.663$		265.368	

Pass-Through Estimates

- Variety pass-through rate
 - $\theta = -9.655$
 - Wholesale price negatively related to variety
- Retail price pass-through rate
 - $\phi_{NLSUR} = 0.730$
 - $\phi_{GMM} = 1.01$
 - \bullet Pass-through > 1.0 when variety endogenous
- Cost of variety is convex function

General Implications of Results

- Hypothesis 1: Wholesale price and variety negatively related
 - Supported by the LA cereal data
- Hypothesis 2: Overshifting is possible when variety endogenous
 - Supported by the LA cereal data
- Multi-product pricing is critical to pass-through estimation
- Pass-through estimates must account for endogenous variety
- Price competition is softened when firms reduce product lines
- Potential for food-price inflation is generally understated

Conclusions

- Strategic behavior important to understanding retail prices
- Store-level scanner data necessary to understand multi-product pricing
- Wholesale price data is important
 - Promodata only measures prices paid by non-self distributing retailers
 - Does not include off-invoice items
- ScanTrack and Infoscan do not include Wal-Mart
- Homescan does not include competitive prices
- iSpendwise option
 - Wiki-data gathering concept
 - Competitive prices and promotions
 - Self-updating data gathering process