# How well do past practices predict future practices?

#### Luba Kurkalova

North Carolina A&T State University

Department of Economics & Finance,

Energy & Environmental Systems interdisciplinary program

### Why does the continuous or intermittent use of practices matter?

- Provision of environmental services
  - Many practices need to be used continuously over several years
- Baseline
  - Many environmental payments and offset rules are based on the practices that farmer previously carried out
  - Assumption: past practices are likely to be carried out in the future
- What empirical support for this assumption is available?

### Typology of Best Management Practices (BMPs)

- <u>Structural</u> once implemented are usually kept in place for several years
  - In-field
    - To control overland flow: terraces, contour buffer strips
    - To control concentrated flow: grassed waterways, diversions
  - Edge-of-field to buffer and filter surface runoff
    - Riparian buffers
  - Wind erosion control practices
    - Windbreaks, cross wind trap strips
- Annual/ Management conducted as part of crop production system each year
  - Residue and tillage management
  - Nutrient management
  - Pesticide management
  - Cover crops

#### This talk

- 1. What <u>data</u> to we have on the <u>annual use</u> of <u>management</u> <u>BMPs</u>?
  - National
  - Large region
  - Small region
- 2. What do we know about the <u>factors</u> that affect the use of management BMPs?
  - Factors that do not change from year to year: farm, farmer
  - Factors that affect relative profitability of farming practices
- 3. Concluding comments

#### Data: nation-wide

- ARMS (Agricultural Recourse and Management Survey)
  - Selected years, crops, states
  - Limited attempts to gather information on continuous use of conservation tillage
- CTIC (Conservation Technology Information Center)
  - Tillage systems by county, yearly 1989 2002, 2004
  - County-average use of specific tillage systems in a given year for a given crop and county, but no data on continuous use
- NRI (National Resources Inventory)
  - 1982 1997, once every 5 years information on some BMPs
  - CEAP NRI (Conservation Effects Assessment Project)
    - Cropland farmer surveys
    - Collected 2003 2006
    - Data on 3-year period for the fields associated with NRI data points

### NRI CEAP regions



Source: http://www.nrcs.usda.gov, downloaded 04/2012

### NRI-CEAP: Ohio-Tennessee river basin report (NRCS, 11/2011)

- Cropped acres data
  - 2,124 sample points representing 25.0 million cropped acres
  - Rotations: 78% in corn-soybean rotation, 5% corn only, 5% soybean only
- Average annual tillage intensity for crop rotation meets criteria for
  - No-till: 52%
  - Mulch till: 41 %
  - Continuous conventional tillage: 4%
- Similarly high average annual use of conservation tillage in the UMRB (NRCS, draft 06/2010)

### Data: regional studies: Hill (JSWC, 2001)

- Continuous no-till
- Corn-soybean rotations, 1995 2000
- Randomly selected 450 fields in each surveyed county



| State/<br>counties<br>surveyed | % fields that have been no-tilled continuously for the indicated number of years |    |    |    |     |  |  |
|--------------------------------|----------------------------------------------------------------------------------|----|----|----|-----|--|--|
|                                | 2                                                                                | 3  | 4  | 5  | 6   |  |  |
| IL/ 18                         | 44                                                                               | 30 | 22 | 19 | 13  |  |  |
| IN/ 11                         | 41                                                                               | 25 | 18 | 14 | 9   |  |  |
| MN/ 10                         | 9                                                                                | 7  | 3  | 3  | n/a |  |  |

### Data: regional studies: Napier and Tucker (EM, 2001)

- 1,011 primary farm operators, 3 watersheds (OH, IA, MN)
- Surveyed in the fall 1998-winter 1999 about farming practices in the preceding 5 years
- 18 practices, including
  - <u>Tillage</u>: fall, no-till, chisel plowing, ridge till, deep moldboard
  - <u>Fertilizer application</u>: fall application, soil testing, winter application of manure, banded in furrow, side-dressing, use of nitrification inhibitor
  - Contour planting, buffer strips
  - IMP, precision farming, crop rotations, mechanical weed control

### Tillage systems: frequency of use (%) in the preceding 5 years

| State / farmers surveyed                                                | Every year | Every other year | Never | Other pattern |                   |  |  |  |  |
|-------------------------------------------------------------------------|------------|------------------|-------|---------------|-------------------|--|--|--|--|
| No-till                                                                 |            |                  |       |               |                   |  |  |  |  |
| OH / 105                                                                | 51         | 14               | 19    | 16            | /2012             |  |  |  |  |
| IA / 355                                                                | 12         | 7                | 57    | 24            | 04/18/            |  |  |  |  |
| MN / 551                                                                | 2          | 1                | 82    | 14            | npa               |  |  |  |  |
| Chisel plowing with 1/3 ground surface covered with residue at planting |            |                  |       |               |                   |  |  |  |  |
| OH / 105                                                                | 29         | 19               | 25    | 27            | lakurkal@ncat.edu |  |  |  |  |
| IA / 355                                                                | 32         | 16               | 25    | 27            | lakı              |  |  |  |  |
| MN / 551                                                                | 51         | 15               | 23    | 10            |                   |  |  |  |  |
| Deep moldboard plowing                                                  |            |                  |       |               |                   |  |  |  |  |
| OH / 105                                                                | 22         | 8                | 47    | 23            |                   |  |  |  |  |
| IA / 355                                                                | 6          | 5                | 44    | 45            | 10                |  |  |  |  |
| MN / 551                                                                | 53         | 9                | 25    | 12            |                   |  |  |  |  |

Source: Napier and Tucker, EM, 2001

## Factors affecting the use of BMPs: a glance from mostly static model studies

- 1) <u>Little change from year to year (Prokopy et al., JSWC, 2008; Lichtenberg et al., AJAE, 2010; Hoag et al., NRCS, 2012)</u>
  - Natural features of the farm
    - (+) Proximity to water bodies, high slope
  - Farmer characteristics
    - (+) Education, Information, Environmental awareness, Networking
    - (-, +) Farmer's age/ Experience
  - Attributes of the farm operation
    - (-, +) Tenure, farm size, off-farm labor
- 2) May change significantly from year to year
  - Weather
  - Relative profitability (e.g., Hoag et al., NRCS, 2012)
    - Crop and production input prices
    - BMP specific incentives

#### Practice baseline is dependent on the land use baseline

- Complex interactions between rotation, tillage, and fertilizer management are not well understood
- Wu and Babcock (AJAE, 1998):
  - 539 NRI sample points, cropland farmer surveys, Central Nebraska basin, 1989-1991, corn producers
  - Farmers rotating crops are likely to use conservation tillage
  - Rotating crops and/or adopting conservation tillage decrease N fertilizer rates
- De La Torre Ugarte et al. (EM, 2004):
  - In the Corn Belt, the incentives to induce conservation tillage on continuous corn could be more than 3 times higher than for a corn-soybeans rotation

#### BMP-specific incentives

- <u>Cross- BMP payment effects</u>: how does the payment for one BMP affect the use of other BMPs? (Lichtenberg, JARE, 2004)
  - 592 farmers, Maryland, 1995, impact of receiving cost-share funds
  - 12 BMPs, both annual and structural
  - Complements (reducing the cost of one increases the probability of using every practice in the group)
    - Critical area seeding, cover crops, waterways
  - Substitutes (reducing the cost of one reduces the probability of using the other)
    - Strip-cropping and terraces
- Post-payment effects:
  - (+) Education effect (Napier and Tucker, JSWC, 2001)
  - (-) Land problem has been addressed (Corbett, SC, 2002)
  - (+, -) Cost of adopting practice (Hoag et al., NRCS, 2012)
  - (-) Crowding out incentives (Prokopy et al., JSWC, 2008; Gneesy et al., JEP, 2011)

### Concluding comments

- We know very <u>little</u> about the year-to-year use of BMPs at the national level
- Few site-specific studies found a great variation in continuity of annual practices
- Research is critically needed to improve our ability to predict year-to-year use of BMPs