Biofuel, the Rural Economy, and Farm Structure

John Miranowski
Professor of Economics
Director, Institute of Science and Society

Transition to a Bioeconomy: Risks, Infrastructure and Industry Evolution
June 24th 2008
Berkeley, California
The Ethanol Explosion

Billion Gallons

2001 2004 2007
Drivers of Feedstock Price

- Processor’s break-even price for corn:

\[P_{\text{Corn}} = 2.80 \times (P_G \times 0.667 + T_{\text{Credit}} + V_O + V_{\text{DDG}} - C_K - C_O) \]

- $60 per bbl price of crude oil translates into $2.07/gallon price of gasoline ($100 bbl oil is $3.45 P_G and $2.30 P_E)

- Sensitivity to current tax credit of $0.51/gallon ($1.40/bu)

- Long Run Breakeven Corn Price: $4/bu at $60/bbl
Implications for agricultural commodities
prices and food-fuel debate

- Corn and biomass price driven by ethanol price driven by oil price
- Growing global demand for crude oil and livestock products
- Crop and livestock products competing for same domestic and global cropland base – all prices increase (Searchinger, et al)
- Higher commodity prices capitalized into cropland values so growing opportunity cost of land, including land producing biomass
Is biomass ethanol the answer?

- **Biomass Processor’s WTP:**

 \[P_{\text{Biomass}} = (P_{\text{Gas}} \cdot E_V + T_{\text{Credit}} + V_O + V_{BP} - C_K - C_V - C_F - C_E)Y_E \]

 \[P_{\text{Biomass}} = \text{MWTP} \]

- **Biomass Supplier’s WTA:**

 \[P_{S\text{Biomass}} = C_{NR} + C_{HM} + C_S + C_T \cdot D + (C_{ES} + C_{Opp})/Y_B \]

 \[P_{S\text{Biomass}} = \text{MWTA} \]

- **Break-even market equilibrium:** \(\text{MWTP} = \text{MWTA} \)
Midwest the Saudi Arabia of Biomass
U.S. Cellulosic Ethanol Plants
New or Under Construction
Current Biomass Ethanol Economics

- Maximum breakeven processor price for biomass is $60/ton with $60/bbl oil; $150/dry ton @ $120/bbl
- Minimum farmer price for delivered biomass is $50-175/ton
- Harvest, transport, and storage costs are $45-100/ton
- Establishment costs are $0-275+/acre
- Opportunity cost of corn land for biomass crop is $200-400/acre
- What is implicit cost/ton of carbon reduced by expanding biofuel?
- Is biofuel an efficient solution to reducing carbon and GHG emissions?
Renewable Fuels Standard

Source: Renewable Fuels Association
Biofuel Policy Approach to Carbon Problem

Impacts of 2007 Energy Independence and Security Act

- 15B gal corn ethanol by 2016 and 20+B gal biomass ethanol by 2022
- Know where we want to go with biomass, residue, and waste biofuels, but how we get there is uncertain
- Life-cycle analyses for new facilities and feedstock create uncertainties
- Implementation of new RFS (e.g., use of waivers) will be critical
- Role of tax credits and tariffs becomes less important
Biofuel Policy Approach to Carbon Problem

Impact of 2008 Food, Conservation and Energy Act

- Lowers VEETC to $.45/gal
- Establishes $1.01 credit for biomass ethanol
- Provides $45/ton payment to producers for HST of biomass to processing plants
Impacts on Rural America of Ethanol Industry?

- Initial plant size was smaller because of capital subsidies leveled playing field and rents captured by local investors: 5 - 40M gal

- Newer plants in era of high oil prices: 50-100M and 275M gal

- Labor-output ratios: 2.0L/1M gal to 0.4L/1M gallons

- Local ownership share decreasing with plant size

- Marginal rural economy impacts of corn ethanol expansion decreasing
Implications of evolving industry structure for the rural economy

- Use a national IO (IMPLAN) model for projections

- Compare 2007 to 2016 CARD baseline ($60/bbl constrained) and LR ($70/bbl unconstrained) equilibrium solutions; 15B and 29B gal ethanol (Searchinger, et al)

- Recognize limitations of IO approach, but indicative of direction and livestock tradeoffs of expansion

- Too early to speculate on biomass feedstock impacts
Estimated Economic Impacts of U.S. Ethanol Industry

<table>
<thead>
<tr>
<th></th>
<th>Solutions</th>
<th>Direct</th>
<th>Indirect</th>
<th>Induced</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output ($Billions)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007 Crop</td>
<td>22.9</td>
<td>13.6</td>
<td>3.1</td>
<td></td>
<td>39.6</td>
</tr>
<tr>
<td>2016 Crop $60/bbl</td>
<td>27.6</td>
<td>16.9</td>
<td>.43</td>
<td></td>
<td>47.9</td>
</tr>
<tr>
<td>2016 Crop $70/bbl</td>
<td>69.0</td>
<td>34.5</td>
<td>6.0</td>
<td></td>
<td>109.7</td>
</tr>
<tr>
<td>Value Added ($ Millions)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007 Crop</td>
<td>669</td>
<td>958</td>
<td>1,495</td>
<td></td>
<td>3,122</td>
</tr>
<tr>
<td>2016 Crop $60/bbl</td>
<td>970</td>
<td>1,185</td>
<td>1,800</td>
<td></td>
<td>3,955</td>
</tr>
<tr>
<td>2016 Crop $70/bbl</td>
<td>973</td>
<td>2,414</td>
<td>3,164</td>
<td></td>
<td>6,551</td>
</tr>
<tr>
<td>Labor Income ($ Millions)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007 Crop</td>
<td>369</td>
<td>503</td>
<td>712</td>
<td></td>
<td>1,590</td>
</tr>
<tr>
<td>2016 Crop $60/bbl</td>
<td>502</td>
<td>623</td>
<td>1,020</td>
<td></td>
<td>2,151</td>
</tr>
<tr>
<td>2016 Crop $70/bbl</td>
<td>837</td>
<td>1,284</td>
<td>1,791</td>
<td></td>
<td>3,913</td>
</tr>
<tr>
<td>Jobs (Thousands)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007 Crop</td>
<td>6.6</td>
<td>8.5</td>
<td>18.6</td>
<td></td>
<td>33.7</td>
</tr>
<tr>
<td>2016 Crop $60/bbl</td>
<td>9.0</td>
<td>11.6</td>
<td>26.7</td>
<td></td>
<td>47.2</td>
</tr>
<tr>
<td>2016 Crop $70/bbl</td>
<td>15.0</td>
<td>23.6</td>
<td>45.8</td>
<td></td>
<td>84.4</td>
</tr>
</tbody>
</table>
Composite rural economic impacts

- 2007-2016 baseline crop ($60/bbl oil constrained)
 - E direct and total VA $0.3B and $0.8B
 - LP direct and total VA $1.6B and $15.2B
 - E direct and total labor income $0.1B and $0.6B
 - LP direct and total labor income $1.3B and $9.2B
 - E direct and total jobs 2.4K and 13.5K
 - LP direct and total jobs 34.3K and 268.4K
- 2016 baseline crop ($60/bbl) – LRE crop ($70/bbl)
 - E direct and total VA $0.0B and $2.6B
 - LP direct and total VA -$0.4B and -$4.2B
 - E direct and total labor income $0.3B and $1.8B
 - LP direct and total labor income -$0.4B and -$2.5B
 - E direct and total jobs 6.0K and 37.2K
 - LP direct and total jobs -9.5K and -74.5K
Biofuels and future farm structure

- Corn Belt commodity agriculture will continue current structural trends
 - Larger commercial farms and less operators
 - Corn stover production will not alter trends
 - Harvest window and HST costs
 - Smaller farms will not be players
 - Integrated farming operations and demand for rural labor?
 - Role of corn and corn stover in long run equation
Biofuels and future farm structure

- Major areas of biomass production (e.g., South, SP, NE, PNW) will focus on large scale, contract production (Epplin)
 - Logistics drive biomass fuels to large scale HST service providers (eg, coops, private)
 - Operating between producer and processor (wheat cutters, hay harvesters, cane sugar)
 - Further concentrate operation of land
 - Storage costs may be prohibitive for some regions and feedstocks
Biofuels and future farm structure

- Processing has scale economies and need 1000-4000 dry tons/day for 25-100M gal/year
 - Possibly use multiple biomass feedstocks
 - Technology will reduce enzyme and processing costs, increase yield, expand byproducts, and change fuel platform
 - Just in time deliveries (2 weeks storage?)
 - Contracting and biofuel plant financing issue
Summary and Conclusions

- Ethanol industry structure will continue to evolve as will farm structure.

- Ethanol expansion having a impact on the rural economy, but with decreasing marginal impacts over time.

- Expansion of corn ethanol above 20B gallons may have negative rural economy impacts.

- Is biomass ethanol the answer?
 - MWTP less than MWTA for biomass at 2007 prices.
 - Carbon price necessary to sustain a biomass fuel industry.
 - Will biomass compete with commodities for cropland?
 - Biomass RFS mandates response regardless of cost.
 - Biomass fuels, rural communities, and environment.
Thank you!
Sensitivity of Biorefinery's MWTP

- Oil price ($50, 60, 120)
- EV (0.667, 1)
- Byproduct ($0, 0.09, 0.18)
- Enzyme ($0.5, 0.2, 0.1)
- YE (50, 60, 100)

Break-even Price

- Low
- Baseline
- High
Sensitivity of Corn Stover Supplier's MWTA

- Trans Cost: Low, Baseline, High
- Storage: Low, Baseline, High
- HM ($15,35,55): Low, Baseline, High
- NR ($5,20,30): Low, Baseline, High
- Opp Cost ($50,0,100): Low, Baseline, High

Breakeven Price
Sensitivity of Switchgrass Supplier's MWTA

Breakeven Price

Trans Cost ($10,12,18) Storage ($5,15,45) HM ($25,35,45) NR ($5,15,25) ES ($100,200,250) Yield (8,4,2) Opp Cost ($0,200,400)

Low Baseline High
Sensitivity of Miscanthus Supplier's MWTA

- Trans Cost ($10,12,18)
- Storage ($5,15,45)
- HM ($25,35,45)
- NR ($5,15,25)
- ES ($200,275,400)
- Yield (18,9,6)
- Opp Cost ($0,200,400)

Breakeven Price

Low
Baseline
High

IOWA STATE UNIVERSITY
Range of Breakeven Values for Select Parameters

<table>
<thead>
<tr>
<th></th>
<th>Corn Stover</th>
<th>Switchgrass</th>
<th>Miscanthus</th>
<th>Woody Biomass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>$82</td>
<td>$177</td>
<td>$130</td>
<td>$83</td>
</tr>
<tr>
<td>$C_{\text{opp}} = 0$</td>
<td>$82</td>
<td>$127</td>
<td>$108</td>
<td>-</td>
</tr>
<tr>
<td>$C_{\text{opp}} = 50$</td>
<td>$107</td>
<td>$139.5</td>
<td>$113</td>
<td>-</td>
</tr>
<tr>
<td>$C_{\text{opp}} = 100$</td>
<td>$132</td>
<td>$152</td>
<td>$119</td>
<td>-</td>
</tr>
<tr>
<td>$C_{\text{opp}} = 200$</td>
<td>$182</td>
<td>$177</td>
<td>$130</td>
<td>-</td>
</tr>
<tr>
<td>$C_{\text{opp}} = 300$</td>
<td>$232</td>
<td>$202</td>
<td>$141</td>
<td>-</td>
</tr>
<tr>
<td>$C_{\text{opp}} = 400$</td>
<td>$282</td>
<td>$227</td>
<td>$152</td>
<td>-</td>
</tr>
<tr>
<td>$C_{\text{HM}} = 15$</td>
<td>$62</td>
<td>$157</td>
<td>$110</td>
<td>$63</td>
</tr>
<tr>
<td>$C_{\text{HM}} = 25$</td>
<td>$72</td>
<td>$167</td>
<td>$120</td>
<td>$73</td>
</tr>
<tr>
<td>$C_{\text{HM}} = 35$</td>
<td>$82</td>
<td>$177</td>
<td>$130</td>
<td>$83</td>
</tr>
<tr>
<td>$C_{\text{HM}} = 45$</td>
<td>$92</td>
<td>$187</td>
<td>$140</td>
<td>$93</td>
</tr>
<tr>
<td>$C_{\text{HM}} = 55$</td>
<td>$102</td>
<td>$197</td>
<td>$150</td>
<td>$103</td>
</tr>
<tr>
<td>$C_{\text{HM}} = 65$</td>
<td>$112</td>
<td>$207</td>
<td>$160</td>
<td>$113</td>
</tr>
<tr>
<td>$D = 10$</td>
<td>$73</td>
<td>$168</td>
<td>$122</td>
<td>$69.50</td>
</tr>
<tr>
<td>$D = 20$</td>
<td>$76</td>
<td>$171</td>
<td>$124</td>
<td>$74</td>
</tr>
<tr>
<td>$D = 30$</td>
<td>$79</td>
<td>$174</td>
<td>$127</td>
<td>$78.50</td>
</tr>
<tr>
<td>$D = 40$</td>
<td>$82</td>
<td>$177</td>
<td>$130</td>
<td>$83</td>
</tr>
<tr>
<td>$D = 50$</td>
<td>$85</td>
<td>$180</td>
<td>$133</td>
<td>$87.50</td>
</tr>
<tr>
<td>$D = 60$</td>
<td>$88</td>
<td>$183</td>
<td>$136</td>
<td>$92</td>
</tr>
<tr>
<td>$D = 70$</td>
<td>$91</td>
<td>$186</td>
<td>$139</td>
<td>$96.50</td>
</tr>
</tbody>
</table>