New Relationships: Ethanol, Corn, and Gasoline Price Volatility

Zibin Zhang and Michael Wetzstein

Department of Agricultural & Applied Economics

University of Georgia

This Research is Supported by the Office of Energy Policy and New Uses, USDA

Transition to a Bioeconomy: Risk, Infrastructure and Industry Evolution Conference Berkeley, CA, June 24-25

"America is addicted to oil"

President Bush, 2006 State of the Union Address

"America is addicted to oil"

President Bush, 2006 State of the Union Address

- Gasoline prices are more volatile than prices for 95% of products sold domestically
- Gasoline price volatility is partially responsible for the 2001 and 2008 recessions
- Diversifying into renewable fuels, such as ethanol, can reduce gasoline-price volatility

Price Volatility: An unpredictable price change

Investigate Alternative Portfolios

- Diversified Fuel Portfolio
 - Petroleum Gasoline
 - Fuel Ethanol
 - U.S.
 - Brazil
- Will a Diversified Portfolio yield lower gasoline price volatility?

Fuel Diversification:

A risk management tool that
mixes fuels into a fuel portfolio

Fuel Portfolio: A collection of fuel types

External Costs (cents/gallon)

External Costs		Gasoline	
	Brazil	United States	
Fuel Related Costs			
Greenhouse Gases	4.8¢	4.8¢	6.0¢
Oil Dependency	0	0	12
Mileage Related Costs			
Local Air Quality	42	42	42
Congestion	105	105	105
Accidents	63	63	63
Total	214.8	214.8	228

Sources: Jacobson, Environmental Sc. Tech., 2007.

Perry, et al., J. of Econ. Literature, 2007.

Searchinger, et al., Science, 2008.

Fuel External Costs (negative externalities): *Drivers do not bear all of the costs of driving*

Food vs. Fuel Issue

Address the Relations Among Biofuel and Fossil-Fuel Prices:

With Consideration of Environmental and Food Security Implications

Tandem Investigations:

There's • energy security 1 in # energy • diversity.

Zhang, Z., L. Lohr, C. Escalante, and M. Wetzstein. "Mitigating Volatile U.S. Gasoline Prices and Internalizing External Costs: A Win-Win Fuel Portfolio." Principal Paper at the AAEA Meetings, Orlando, FL, 2008.

Zhang, Z., L. Lohr, C. Escalante, and M. Wetzstein. "Ethanol and Corn Price Relations in a Volatile Vehicle-Fuels Market." Selected Presentation at the AAEA Meetings, Orlando, FL, 2008.

Data: Wholesale prices

- Portfolio (1998-2007):
 - Brazilian Ethanol
 - U.S. Petroleum Fuel
 - U.S. Ethanol
- Food vs. Fuel (Ethanol/Corn Volatility)
 - U.S. Ethanol
 - Corn
 - Gasoline
 - Oil

Portfolio

Apply portfolio theory to the application of vehicle-fuel prices and volatility

Markowitz, 1990 Nobel Prize winner

Employ a MGARCH model to estimate the variances and covarances of the three fuels

Engle, 2003 Nobel Prize winner

MGARCH: A statistical time series model

Policy Analysis

Free-market ethanol: removing the federal fuel-ethanol tax credit (subsidy) and ethanol import tariff

 Automobileenvironmental issues: greenhouse gases, oil dependency, air quality, congestion, and accidents

Research Discovery

■ This approach resulted in the discovery of how we can simultaneously reduce price volatility and address environmental concerns

Model: Expected Portfolio Price

Expected portfolio price, E(p), is composed of Brazilian and U.S. ethanol prices along with the petroleum gasoline price

$$E(p) = \alpha_B E(p_B) + \alpha_E E(p_E) + \alpha_G E(p_G)$$

where $E(p_B)$, $E(p_E)$, and $E(p_G)$ are the prices of Brazilian ethanol, U.S. ethanol and gasoline, and α_B , α_E , and α_G are the associated weights for the respective expected prices with their sum equaling unity.

Model: Portfolio Variance

■ The volatility associated with expected portfolio price, E(p), is represented by the portfolio's variance

$$\sigma^{2} = \alpha_{B}^{2} \operatorname{var}(p_{B}) + \alpha_{E}^{2} \operatorname{var}(p_{E}) + \alpha_{G}^{2} \operatorname{var}(p_{G}) + 2\alpha_{B}\alpha_{E} \operatorname{cov}(p_{B}, p_{E}) + 2\alpha_{B}\alpha_{G} \operatorname{cov}(p_{B}, p_{G}) + 2\alpha_{E}\alpha_{G} \operatorname{cov}(p_{E}, p_{G})$$

where $var(p_B)$, $var(p_E)$, and $var(p_G)$ are the variances of Brazilian and U.S. ethanol and petroleum fuel prices, and cov represents the associated covariance

Results

Efficient Portfolio Frontier with Current Subsidy/Tariff Policy for Year 2006

Selected Frontier Points for Year 2006

Price		Subsidy/Tariff			Free-Market			
(\$/gal.) Volatility _	Volatility _	Weights			Volatility	Weights		
		Ethanol		Gasoline	v	Ethanol		Gasoline
		Brazil	United	United		Brazil	United	United
		States States	States			States	States	
1.9	0.092	0.02	0	0.98	0.106	0.02	0	0.98
2.0	0.075	0.12	0	0.88	0.086	0.13	0	0.87
2.1	0.061	0.23	0	0.77	0.069	0.24	0	0.76
2.2	0.051	0.33	0	0.67	0.056	0.35	0	0.65
2.3	0.044	0.41	0.02	0.57	0.046	0.46	0	0.54
2.4	0.040	0.47	0.06	0.47	0.040	0.56	0	0.44
2.5	0.038	0.51	0.11	0.38	0.036	0.67	0	0.33

Policy Analysis

Free-Trade and Added Environmental Cost Efficient Portfolio Frontiers for Year 2006

Selected Frontier Points for Year 2006

Price	Subsidy/Tariff				Free-Market			
(\$/gal.) V	Volatility <u>Etha</u> Brazil	Weights			_ Volatility		Weights	
		Ethanol		Gasoline		Eth	anol	Gasoline
		Brazil	United	United		Brazil	United	United
		States Sta	States	States		States	States	
1.9	0.092	0.02	0	0.98	0.106	0.02	0	0.98
2.0	0.075	0.12	0	0.88	0.086	0.13	0	0.87
2.1	0.061	0.23	0	0.77	0.069	0.24	0	0.76
2.2	0.051	0.33	0	0.67	0.056	0.35	0	0.65
2.3	0.044	0.41	0.02	0.57	0.046	0.46	0	0.54
2.4	0.040	0.47	0.06	0.47	0.040	0.56	0	0.44
2.5	0.038	0.51	0.11	0.38	0.036	0.67	0	0.33

Implications

- Current U.S. gasoline policies are minimizing the expected prices at the expense of high fuel-price volatility
- By incorporating ethanol, fuel-price volatility is reduced at a cost of higher prices. Considering the social cost of gasoline, such a shift may be desirable

Food vs. Fuel

- Price Volatility Measurements
 - Classical
 - Six-week overlapping window for ethanol and corn prices
 - Simple volatility measure (standard deviation)
 - MGARCH
 - Less restrictive
 - Links corn, ethanol, gasoline, and oil prices
- VAR (price level)

Standard Error Regressions

Classical: Granger Causality

Other factors (gasoline and oil) may contribute to corn and ethanol price volatility

MGARCH Results

Ethanol Price Volatility

95% C.I. →

Corn Price Volatility

VAR: Granger Causality

Implications

- Consistent with Economic Theory
 - Ethanol and oil demand are derived demands from gasoline
 - Given a shock, market signals restore market equilibrium
 - A shock may increase price volatility, but decentralized markets will mitigate the shock's persistence

Price

Conclusions

- Governmental Policies
 - Promote an increasing share of ethanol in our vehicle-fuel portfolio
 - Provide a buffer in the form of agricultural commodity surpluses

Research Extension

- Introduce soybean prices into the models
 - Prices
 - Ethanol
 - Corn
 - Soybeans
 - Gasoline
 - Oil
- **Consider cointegration among the prices**
- Incorporating these two extensions yields the same general conclusions

Major Caveat

- This is a partial equilibrium analysis
- A general equilibrium analysis is required
 - How do biofuels fit into a portfolio with other alternative energy sources?
 - Parallel avenues exist for kicking our oil addiction
 - Plug-in hybrid vehicles
 - The near future of vehicles is in electric power
 - What place if any will biofuels fit into this future?

University of Georgia Recent Biofuel Economic Articles

- Lohr, L., C.L. Escalante, and M.E. Wetzstein. "Ethanol Fuel Subsidy: Has It Out-Lived Its Usefulness?" Yale Economic Review. (2008): Accepted.
- Vedenov, D., J.A. Duffield, and M.E. Wetzstein. "Entry of Alternative Fuels in a Volatile U.S. Gasoline Market." Journal of Agricultural and Resource Economics, 31(2006):1-13.
- Vedenov, D. and M.E. Wetzstein. "Toward an Optimal U.S. Ethanol Fuel Subsidy." Energy Economics. (2008): Accepted.
- Zhang, Z., L. Lohr, C. Escalante, and M.E. Wetzstein. "Mitigating Volatile U.S.Gasoline Prices and Internalizing External Costs: A Win-Win Fuel Portfolio." American Journal of Agricultural Economics, 90(2008): Accepted.
- Zhang, Z., D. Vedenov, and M.E. Wetzstein. "Can the U.S. Ethanol Industry Compete in the Alternative Fuels' Market?" Agricultural Economics, 37(2007):105-112.
- Zhang, Z. and M.E. Wetzstein. "Biofuel Economics: Past and Future." CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources. 3(2008): Accepted.