Managing R&D Risk In Renewable Energy

Presented at *Transition to a Bioeconomy: Risk, Infrastructure, and Industry Evolution*Berkeley, June 24, 2008

Gordon Rausser,

Maya Papineau,

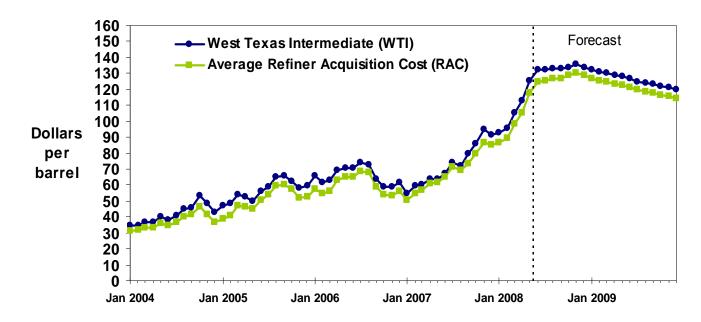
Robert Gordon Sproul

PhD Student

Distinguished Professor

Department of Agricultural and Resource Economics, UC Berkeley

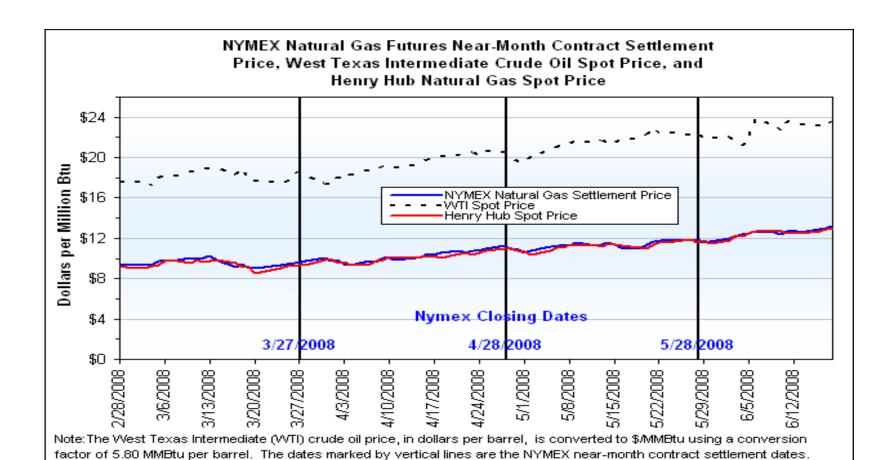
External Forces

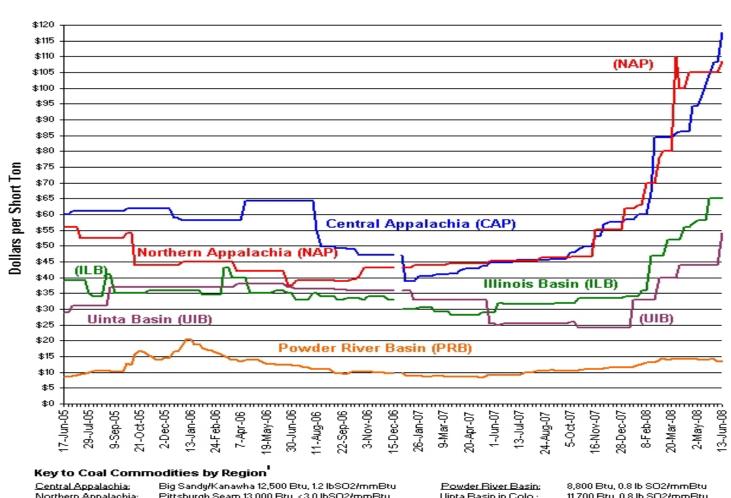

- Crude Oil Prices
- Natural Gas Prices
- Coal Prices
- Corn Prices
- Other External Forces
- In contrast to 1970s, are they sustainable?

Renewable R&D Investment Drivers

Crude Oil Prices are breaking records

- Crude oil record \$138/barrel
- Gasoline \$4.05/gallon; Diesel \$4.79/gallon


Crude Oil Prices

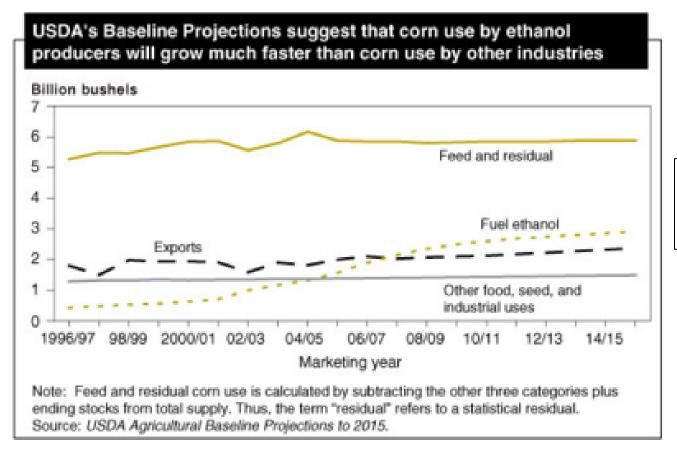

Natural Gas is trending upwards

(http://www.reuters.com).

Source: Natural gas prices, NG/'s Daily Gas Price Index (http://Intelligencepress.com); WTI price, Reuters News Service

Coal is trending upwards

Northern Appalachia: Illinois Basin:

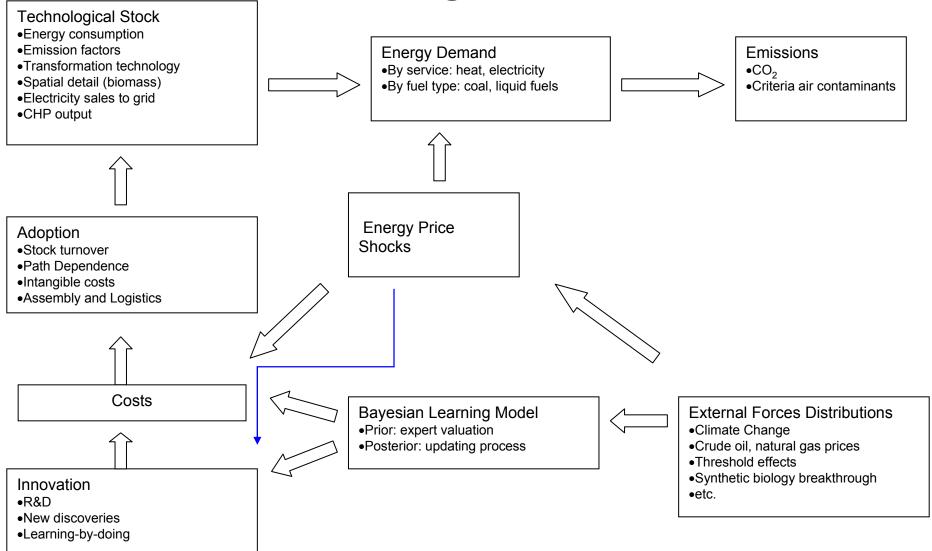

Pittsburgh Seam 13,000 Btu, < 3.0 lbSO2/mmBtu 11,800 Btu, 5.0 lb SO2/mmBtu

Uinta Basin in Colo.:

11,700 Btu, 0.8 lb SO2/mmBtu

Corn Prices are rising

- Corn Futures: \$7.03/bushel July 2008; \$7.47/bushel in 2009
- Corn use for ethanol is projected to rise


Corn for ethanolCorn for feed

Emerging Industrialization Policies

- Subsidization of R&D Renewable Energy Technologies
- Prior Experience, e.g. Infant Industry Experience
- Brazil subsidization of sugar-based ethanol
- Lobby efforts to maintain subsidization
- Commercial market subsidies: biofuel mandates, tax credits, credit subsidies, risk swaps, price subsidization, input subsidies, trade protection

- Proposed Framework: Ex-Ante allocation of renewable energy investment across emerging technologies using modern portfolio analysis under risk and uncertainty.
- Avoid privatisation of upside and socialization of downside risks

The Big Picture

Renewable R&D Landscape

Public Sector

DOE Renewable Energy Milestones

Callulacia Ethanal	cellulosic ethanol cost competitive with conventional ethanol by 2012	
Cellulosic Ethanol	replace 30% of today's gasoline in 2030 with biofuels	
	industry commercialization possible by 2015	
Hydrogen	fuel cell vehicles in the showroom and hydrogen at fueling stations by 2020	
Solar	reduce solar costs to grid parity in all U.S. markets by 2015	
	reduce cost of energy from large systems to 3 cents\kwh by 2010	
Wind	greatly expanded deployment of distributed wind energy by 2016	
	large-scale offshore wind and hydrogen production from wind by 2020	

Share of Federal Renewable Energy R&D has increased:

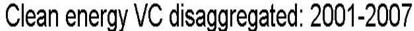
Table 2: Federal Energy R&D (\$Millions)			
	Total Energy	Renewable	Share of total
1990	4,047	381	0.09
1991	3,844	482	0.13
1992	3,940	558	0.14
1993	3,316	613	0.18
1994	3,475	719	0.21
1995	3,355	770	0.23
1996	2,908	644	0.22
1997	2,638	627	0.24
1998	2,810	699	0.25
1999	3,111	763	0.25
2000	3,036	746	0.25
2001	3,401	800	0.24
2002	3,580	825	0.23
2003	3,425	779	0.23
2004	3,418	712	0.21
2005	3,361	693	0.21

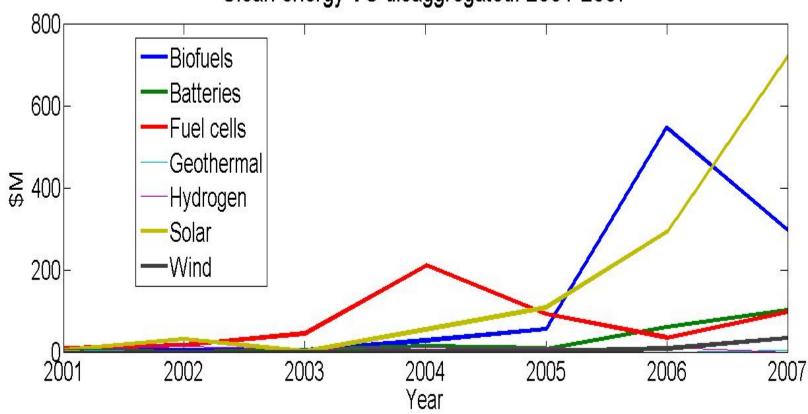
9% in 1990

21% in 2005

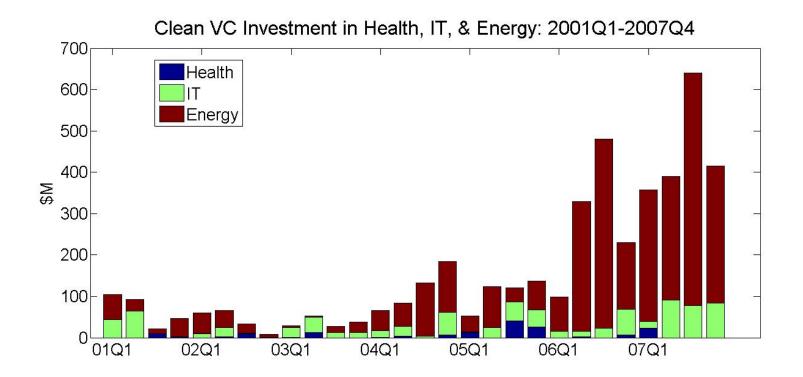
Biomass R&D Funds Have Increased

DOE and USDA Biomass R&D (\$M)		
	USDA	DOE
2002	5	92
2003	14	86
2004	14	69
2005	14	89
2006	12	90
2007	12	150


Solar, Wind, Geothermal and Energy Storage R&D Funds Have Decreased

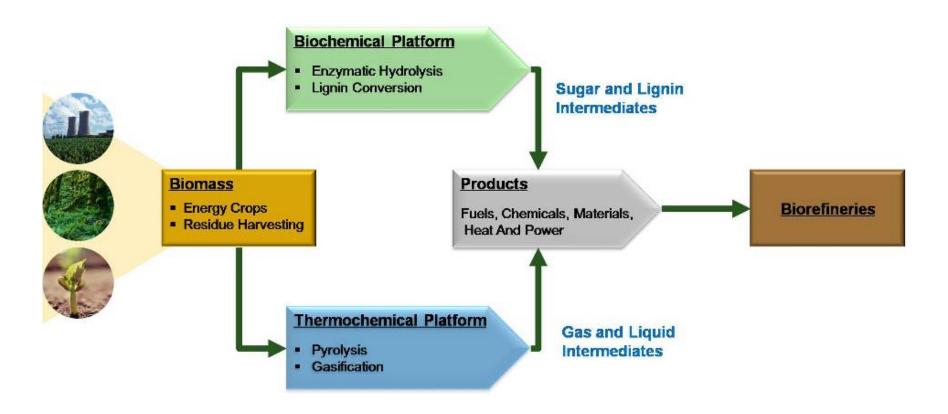

Federal Energy R&D Breakdown (\$M)				
	Batteries	Solar	Wind	Geothermal
2001	7	105	45	30
2002	78	100	43	30
2003	93	90	45	31
2004	9	86	42	26
2005	4	87	42	26
2006	3	83	39	23

Current Legislation

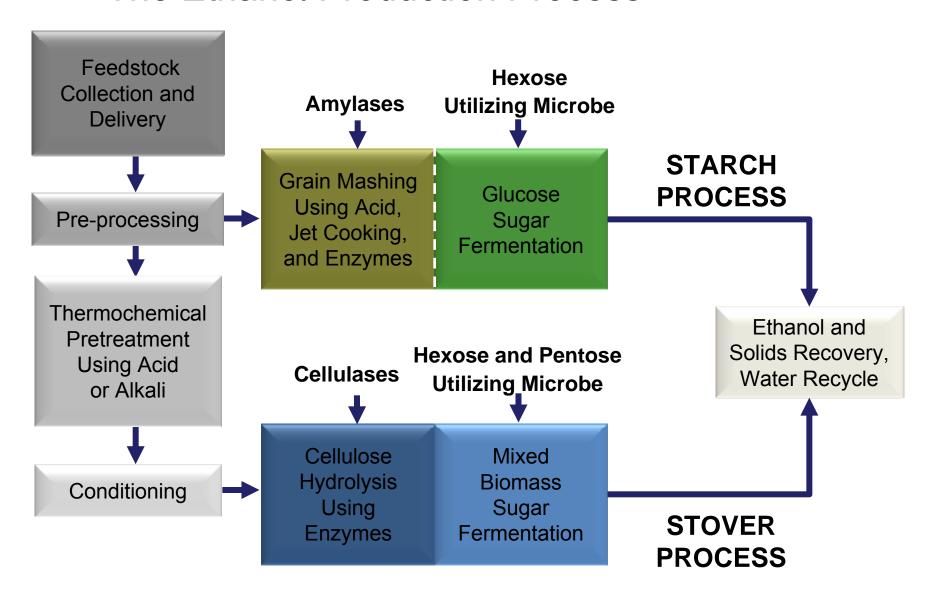

- Energy Independence and Security Act
 - 36 billion gallon mandate for renewable fuels by 2022, up from 9 billion in 2008
 - Authorizes \$500 million annually from 2008-2015 for production of advanced fuels that yield at least a 80 percent reduction in lifecycle GHGs
- 2008 Farm Bill
 - Approved a \$1.01 per gallon credit for cellulosic biofuels
 - Dropped the subsidy to 45 cents per gallon for conventional ethanol
- Tax credits of 1.5 cents per kWh for energy produced from wind, solar, geothermal or certain types of biomass

Private Sector Has Responded to Favorable Investment Conditions

Increasing exposure in the renewable energy market


Public-Private Partnerships

- UC Berkeley LBNL University of Illinois BP
 - Energy Biosciences Institute
 - \$500 million over ten years
- UC Davis Chevron
 - Cellulosic ethanol
 - \$25 million over 5 years
- Iowa State Conoco-Phillips NREL
 - Cellulosic Ethanol, Pyrolysis, Gasification
 - \$22.5 million over 8 years


Potential Breakthroughs in Renewable Energy Technologies

- Biofuels
- Hydrogen
- Hybrid and Electric Vehicles
- Biomass for Electricity Production
- Solar Energy
- Wind Energy

Alternative Paths to Ethanol Production

The Ethanol Production Process

Biofuels: Potential Breakthrough Areas

Cellulosic Ethanol

- -Depolymerization/Hydrolysis
- -New Microbes
- -New Catalysts

Feedstock Development:

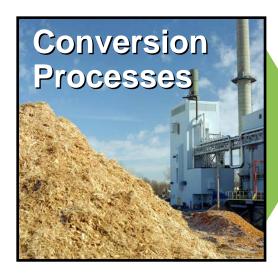
- -Miscanthus
- -Switchgrass
- -Wood
- -Agricultural Waste

Biodiesel

- -Cellulosic Biomass
- -Algae
- -Waste

Conventional Ethanol

- -Corn Seed Genetics
- -New Enzymes


DOE Ethanol Research Timeline

Within 5 Years Research Phase	Within 10 Years Deployment Phase	Within 15 Years Integration Phase
 •Methods for cellulosic feedstock harvest and conversion to ethanol •Enzymatic breakdown to 5- & 6-carbon sugars & lignin •Use of Thermo- and Biochemical Conversion 	 Creation of new generation of energy crops Breakdown of biomass to sugars & cofermentation of sugars via new biological systems Enhanced substrate range, temperature & inhibitor tolerance 	 Spur flexible biorefineries Refineries tailored for specific agroecosystems New & improved enzymes for breaking down biomass into sugars

Range of Possible Biorefinery Concepts

- Trees
- Grasses
- Agricultural Crops
- Residues
- Animal Wastes
- Municipal Solid Waste
- Algae
- Food Oils

- Enzymatic Fermentation
- Gas/liquid Fermentation
- Acid Hydrolysis/ Fermentation
- Gasification
- Combustion
- Co-firing
- Trans-esterification

Products

Fuels

- Ethanol
- Biodiesel
- "Green" Gasoline & Diesel

Power


- Electricity
- Heat

Chemicals

- Plastics
- Solvents
- Chemical Intermediates
- Phenolics
- Adhesives
- Furfural
- Fatty Acids
- Acetic Acid
- Carbon Black
- Paints
- Dyes, Pigments, and Ink
- Detergents
- Etc.

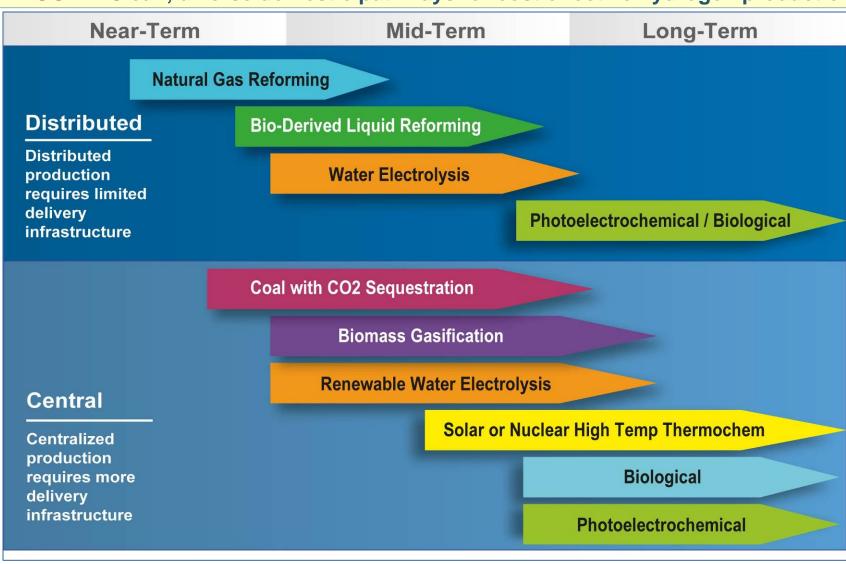
Food and Feed

Strategic Approach

Other Renewable Technologies

Hydrogen Breakthrough Potential

Storage Capacity


- High-density hydrogen storage
- Solid hydrogen fuel
- Hydrogen storage with carbon nanotubes
- Reduced Vehicle Weights

'Clean' Hydrogen Production

- Electrolysis
- Photoelectrochemical splitting
- Biomass anaerobic digestion
- Hydrogen-producing algae and bacteria

HYDROGEN PRODUCTION: Pathways

GOAL: Clean, diverse domestic pathways for cost effective hydrogen production.

Hybrid/Electric Vehicle Potential Breakthroughs

- Greater energy density
 - Smaller battery size

- Longer Battery Life:
 - -less degradation with age

Solar Energy Breakthroughs

Thin-Film PV

- New materials:
 - amorphous silicon
 - copper diselenide
 - Cadmium telluride
- Increased Efficiency
- Improved manufacturing process
- Long-Term Outdoor Reliability

PV Concentrators

- Higher efficiencies
- More robust modules
- Improved suntracking arrays

Long-Term Potential Breakthroughs

Tandem Cells

Multiple bandgaps at low cost

Nanomaterials

- Nanosize photon absorbers
- Nanowires as photon waveguides

Multiple Exciton Generation

- Multiple electron excitons per photon
- Improved efficiency through inorganic semiconductor nanocrystals

Plasmonics

Increased cell light absorption electron density waves

Wind Energy Breakthroughs

Continued Incremental Turbine Improvement:

- lighter weight, increased capacity
- Eliminate hydraulic systems
- "Smart rotor" development
- Advanced electronic control systems

Current Costs

Renewable Energy Costs, Transportation Fuels (\$/MJ)			
Gasoline Benchmark		0.012	
Biofuels	corn ethanol	0.018	
	corn stover	0.0236	
	switchgrass	0.0354	
	miscanthus	0.0242	
	sugar cane (Brazil)	0.0101	
	sugar cane bagasse	0.056	
	biodiesel algae	n/a	
	biodiesel waste grease	0.0103- 0.0158	
	biodiesel vegetable oil	0.016-0.020	

Renewable Energy Costs, Electricity (\$/MJ)			
Coal Benchmark	pulverized coal	0.011- 0.014	
Biomass	biomass electricity (no cogen)	0.014- 0.019	
	landfill gas electricity	0.008-0.01	
	anaerobic digestion electricity	0.01-0.015	
	hydrogen from wind	0.028- 0.039	
Other Renewable	solar	0.083-0.11	
	wind	0.01-0.016	

Production or Cost Function Representation

 Common Framework to represent each technology:

Production

$$m_{it} = r_{it} + a_{it}F(L_{it}, K_{it}, m_{it})$$

 m_{it} =feedstock input, r_{it} = carbon by-product, a_{it} = productive efficiency parameter

or Cost

 $b_{it}C_i$ = unit cost of the i-th technology at time t.

- Goal is to develop a portfolio analysis of R&D investments in renewable energy
- Elicit expert evaluation of probability distribution around future productivity improvement/cost reduction

Productivity improvement $\longrightarrow a_{it}$ rises

Cost reduction \rightarrow b_{it} falls

- Computable portfolio model
- Bayesian structured updating process
- Generate time- and performance-dependent optimal mixed strategy across renewable energy technologies

- Determination of the Optimal Portfolio
 - Social Welfare
 - –Private Sector Conditional On Public Sector Actions
 - -Public Sector Decision-Making

Conclusion

- Potential uses of Risk Modelling Framework
 - Determine public sector portfolio of riskadjusted allocation of R&D resources
 - Determine the private sector's allocation of R&D resources conditional on the current portfolio of public and other private sector investments
 - Evaluate grant proposals for potential standalone discovery impact versus the effect on the overall portfolio

Conclusion cont'd...

- Ex-Ante Rational Public Policy
 - Avoid pitfalls of industrialization efforts
 - Generate mixed strategies across alternative renewable energy technologies with exit clauses for terminating policy instruments that generate rents and subsidies to the private sector

Thank You