# Open Source in Crop Biotechnology

Brian D. Wright

Agricultural and Resource Economics
UC Berkeley

Conference on "Second Decade of Crop Biotechnology: Opportunities and Challenges for the Food System" Washington D.C., January 16, 2008

### Can Open Source work in biology?

It has for millennia in agriculture!

## Agricultural Innovation History: Precursor of "Open Source" Model

- Farmer/blacksmith innovation, no IPR (Evenson)
- Sharing of germplasm
- Recent example: no-till and low-till agriculture (1970s innovation)
  - Invented by farmers
  - No IP

# The Role of Intellectual Property Rights (IPR) in 20<sup>th</sup> century agriculture before the IPR/biotech revolutions

- Important in Some Horticultural Crops
  - Plant patents, Plant VarietyProtection
- Largely Irrelevant in Field Crops
  - yet great yield increases
- Hybrid Corn as the Privatized Exception
  - Capitalist plot?

#### From late 20<sup>th</sup> century, four revolutions:

Globalization

Information Technology

**Biotechnology** 

Intellectual Property Rights

Opportunities and challenges for ag. research systems

### Revolution in Ag Biotech Patenting

- Crucial court ruling:
  - Diamond v. Chakrabarty (1980): living organism
- Bayh-Dole Act (1980) encouraged patenting of federal-funded research
- NIH federal fund fire-hose
  - \$20B still can buy a lot of patentable basic research!
- Court of Appeals of Fed. Circuit strengthened patentee's rights

#### Revolutionary complementarities

• Biotech made patents enforceable

 Patents made private biotech fundable

Impressive results in four major crops

### Second-Round Problem: "Anti-Commons" in North

- Cumulative technology in seed package:
- multiple prior claims (unlike Pharma)
- High transaction costs of licensing
  - Uncertain, excessively broad, and conflicting IPR claims
  - Difficulty of identifying valid licensors
  - Much costly and slow litigation
  - Liability, brand image, and externality control

#### Problems for Public Sector

- Public/nonprofits have IPR and freedom to operate challenges too
- Public sector also patenting, increasing the problem
- Public sector cannot avoid problems by integration
- Public sector is a big deal in ag research

#### What Land Grant agricultural biologists say:

"Overall, IP protection of research tools is having a NEGATIVE impact on research in your area."



1: disagree strongly3: neither disagreenor agree5: agree strongly

11 respondents have no opinion

Source: Lei, Juneja and Wright 2008

# Will patent sharing solve the problem?

What can we learn from Golden Rice?

 "...the recent example of Golden Rice shows that patented technologies need not necessarily be a barrier."

(Nuffield Council on Bioethics 2004 p. xix)

### Golden Rice: Reality Check

- Patents are NATIONAL in scope
- There are few or no valid patents in major rice-consuming countries (pre-TRIPS environment).
- Most rice not traded where most patents held\*
- \*Binenbaum, Eran, Carol Nottenburg, Philip G. Pardey, Brian D. Wright and Patricia Zambrano. 2003. "South-North Trade, Intellectual Property Jurisdictions, and Freedom to Operate in Agricultural Research on Staple Crops. *Economic Development and Cultural Change*, 51(2): 309-355.

#### Other initiatives

Multilateral cooperation in sharing IP:

- PIPRA
- **AATF** (African Agricultural Technology Foundation)

**Open Source Biology** 

### "Open Source": Key Features

In its Modern Incarnation, must deal with privatized research inputs, and patentability of outputs

- Full disclosure of enabling information including source code
- 2. Use of legal instruments including copyright to confer rights and responsibilities
- 3. Commons for all who agree to share alike

### Modern Open Source Origins

Free software movement as a software development paradigm

- free as in "free speech," not as in "free beer"

- "software libre"

- embedded Linux as one example

### Open Source Efficiencies

Research Tools are:

- shared
- dynamically enhanced
- establish efficacy and reliability
- have low or no cost

### One example: BiOS License

- Full commercialization rights
- Share (or keep secret) all improvements to the core technologies
- Not assert, over BiOS licensees, own or third party rights that might dominate defined technologies
- Share with public all information re biosafety

### Can Open Source work in biology?

- Copyright is free to obtain, patenting costs money
- Patents are national: global cover is costly
- Universities claim title to patents, not generally to copyrights
- Easier to get or re-establish "Freedom to Operate" in copyright

# Can a Restoration of Open Source Work in Crop Biotechnology?

 Is the software/copyright analogy appropriate?

It worked fine in a world without IPRs

 Key Issue: Can it work in the new world of patents?