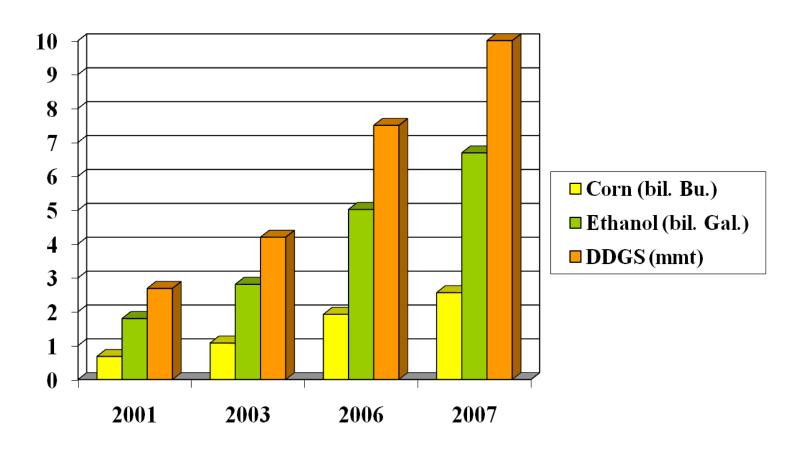


BioEnergy

Fueling America Through Renewable Resources

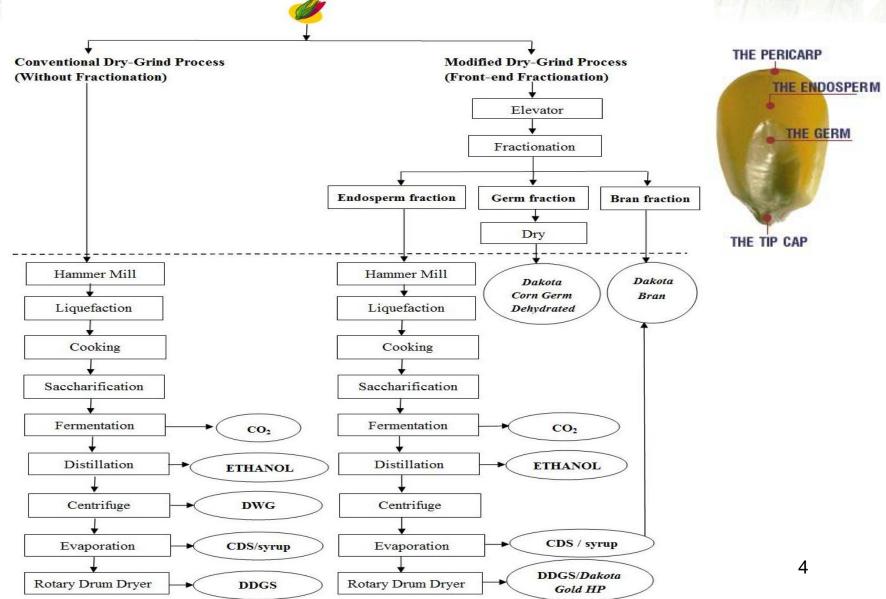

ECONOMIC VALUE OF ETHANOL CO-PRODUCTS IN SWINE DIETS: EVALUATING PROFITABILITY OF CORN FRACTIONATION TECHNIQUES

Bhawna Bista, Todd Hubbs, Brian T. Richert, Wallace E. Tyner and Paul V. Preckel Purdue University

OVERVIEW

U.S. Ethanol & DDGS Outlook

Data Source: U.S. Energy Information Administration / RFA


OVERVIEW

Dry Milling is the most preferred ethanol process today

- ➤ Typical co-products → DDGS and CO₂
- Challenges with DDGS → nutrition profile, high fiber content reduces use in non-ruminants.
- New dry milling technologies → focus on improving inputs, processes, environment and co-products.
- ➤ Corn Fractionation → additional new feed co-products
 - ➤ Benefits → higher ethanol yield, improved nutrient profile of coproducts, greater energy savings, environment friendly process.

FRACTIONATION Bio Ene

PROBLEM STATEMENT

- ➤ Historically, DDGS is a more popular feed ingredient in ruminant diets than non-ruminant diets.
- ➤ Concerns about feeding DDGS and germ to swine
 - ➤ High fiber content
 - ➤ Low protein
 - ➤ High oil content
- ➤ Urgent need to understand economic value of different types of DDGS in the market (conventional vs. new)
- ➤ Economic analysis of fractionation technology and its effect on the nutritional profile of its co-products is important.

MODELS & METHODS

Linear Programming Model for Diet Cost

- ➤ Objective → Impute the economic value of DDGS and germ as ingredients of swine diets.
- ➤ Model → Feed ration model, in the form of a constrained cost minimization linear program (LP).
- ➤ Constraints → Upper and lower bounds on nutrients specific to the growth stage of the pig.

➤ Data:

- ➤ Iowa DDGS → Big River Resources Ethanol plant, Iowa
- ➤ Fractionated DDGS & Germ → Poet plant, South Dakota

MODELS & METHODS

Ethanol Plant Model in EXCEL

- ➤ Objective → Evaluate profitability of corn fractionation technique
- ➤ Model → Economic model of 50 MGY ethanol plant with and without fractionation technology
- ➤ Revenue → Ethanol, DDGS, Bran and Germ
- Costs → Corn cost, operating cost
- Data required → Yield and prices, amount of corn required, operating cost.
- Data source → FWS Technologies, Winnepeg, Canada.

Data for 50 MGY Ethanol Plant Model

	Without Fractionation	With Fractionation
Annual Ethanol Capacity (MGY)	50,000,000	55,000,000
Corn Required (bushels)	17,857,143	20,676,692
Operating Cost (\$/gallon)	\$0.61	\$0.53
Iowa DDGS Yield (lbs/bu)	17.4	
Fractionated DDGS Yield (lbs/bu)		12.5
Bran Yield (lbs/bu)		3.4
Germ Yield (lbs/bu)		4.4

Bio Energy Fueling America Through Renewable Resources

Co-products Data

	Units	Iowa DDGS	Fractionated DDGS	Germ
ME (kcal/lb)	kcal/lb	1775	1687	1828
Crude Protein	%	29.1	41.0	15.7
App. Dig. Lysine	%	0.51	0.70	0.47
App. Dig. Meth+Cys	%	0.85	1.72	0.46
App. Dig. Threonine	%	0.73	1.16	0.30
App.Dig. Tryptophan	%	0.15	0.27	0.13
App. Dig. Isoleucine	%	0.75	1.16	0.23
App. Dig. Valine	%	0.98	1.57	0.43
Calcium	%	0.03	0.01	0.02
Phosphorous	%	0.81	0.35	1.28
Digestible Phosphorous	%	0.49	0.28	0.77
Crude Fiber	%	6.20	6.67	5.40

RESULTS

Linear Programming Model for Diet Cost

		Iowa DD	GS	Fra	ctionated I	DDGS		Germ	
	Max. %	Shadow Value	Diet Cost	Max. %	Shadow Value	Diet Cost	Max. %	Shadow Value	Diet Cost
Grower 1	26.95	\$158.57	\$156.80	14.08	\$144.84	\$159.42	35.86	\$137.47	\$157.70
Grower 2	27.92	\$158.57	\$149.51	13.08	\$157.49	\$153.22	37.66	\$137.47	\$151.35
Finisher 1	28.65	\$158.57	\$140.98	9.79	\$186.92	\$146.86	25.03	\$136.13	\$145.32
Finisher 2 w/o Paylean-9®	19.23	\$158.57	\$138.52	6.57	\$186.92	\$142.36	8.27	\$157.26	\$143.64
Finisher 2 w/ Paylean-9®	26.62	\$164.10	\$168.11	16.92	\$186.92	\$168.72	21.01	\$137.47	\$175.06
Gestating Sow	9.66	\$182.31	\$138.16	0.90	\$209.50	\$143.40	32.25	\$157.87	\$131.47

Results: Ethanol Plant Model in EXCELBio Energy

Annual Totals	W/O Fractionation	With Fractionation	
Ethanol	\$100,000,000	\$110,000,000	
Iowa DDGS	\$18,332,143		
Fractionated DDGS		\$13,928,665	
Bran		\$2,284,750	
Germ		\$4,608,093	
Total Revenues	\$118,332,143	\$130,821,507	
Corn Cost	\$59,464,286	\$68,853,384	
Operating Costs	\$30,500,000	\$29,150,000	
Total Costs	\$89,964,286	\$98,003,384	
EBITDA	\$28,367,857	\$32,818,123	
Increased Net Income from Fractionation Technique = \$4,450,266			
Present Value (PV) of In	ncreased Annual Revenue	<i>= \$38,945,481</i>	

SUMMARY

- ➤ Low maximum optimal inclusion rates of Fractionated DDGS because:
 - ➤ Higher app. dig. lysine content than Iowa DDGS
 - ➤ Good amino acid profile
 - ➤ Lower energy value
- ➤ Despite low inclusion levels, shadow values of fractionated DDGS is comparable to that of Iowa DDGS.
- Lower diet cost with Iowa DDGS because the high inclusion rates replaces more corn, and phosphorus in the diet.
- ➤ High inclusion rates of Germ because of its high energy value.

SUMMARY

- Fractionation technology more profitable than conventional technique as a result of greater ethanol yield and higher revenue from co-products.
- ➤ Conclusion → Despite lower inclusion levels, Fractionated DDGS has higher economic value than lowa DDGS and should increase net revenue for the ethanol plant producers.

THANK YOU!

QUESTIONS?

Price Information for the Models Bio Energy Renewable Resources

For the Ethanol Plant Model

Corn (\$/bushel)	\$3.33
Iowa DDGS (\$/ton)	\$118.00
Fract. DDGS (\$/ton)	\$107.78
Bran (\$/ton)	\$65.00
Germ (\$/ton)	\$101.30
Ethanol (\$/gallon)	\$2.00

For the LP Model (\$/lb)

DDGS	\$0.06
Corn	\$0.06
SBM	\$0.13
Limestone	\$0.05
DiCalPhos	\$0.28
Vitpremix	\$0.85
Lysine HCL	\$0.99
DL Meth	\$1.30
Grease	\$0.24
Lthreonine	\$1.17
Ltryptophan	\$22.50
Paylean®	\$26.00

PURDUE

Ethanol Plant Model in EXCEL PURDUE AGRICULTURE (at highest sow diet prices)

Annual Totals	W/O Fractionation	With Fractionation		
Ethanol	\$100,000,000	\$110,000,000		
Iowa DDGS	\$18,332,143			
Frac. DDGS (at 135.6 \$/ton)		\$17,523,452		
Bran		\$2,284,750		
Germ (at 102.2 \$/ton)		\$4,648,066		
Total Revenues	\$118,332,143	\$134,456,268		
Corn Cost	\$59,464,286	\$68,853,384		
Operating Costs	\$30,500,000	\$29,150,000		
Total Costs	\$89,964,286	\$98,003,384		
EBITDA	\$28,367,857	\$36,452,884		
Increased Net Income from Fractionation Technique = \$8,085,027				
Present Value (PV) of Increas	sed Annual Revenue	= \$70,754,257		

Price Information for the Models Bio Energy Fueling America Through Renewable Resources

Ethanol plant model results at current market price

Corn (\$/bushel)	\$4.50
Iowa DDGS (\$/ton)	\$170.00
Fract. DDGS (\$/ton)	\$220.00
Bran (\$/ton)	\$75.00
Germ (\$/ton)	\$160.00
Ethanol (\$/gallon)	\$2.00

PURDUE

Ethanol Plant Model in EXCEL PURDUE AGRICULTURE (at current market prices)

Annual Totals	W/O Fractionation	With Fractionation	
Ethanol	\$100,000,000	\$110,000,000	
Iowa DDGS (at 170 \$/ton)	\$26,410,714		
Frac. DDGS (at 220 \$/ton)		\$28,430,380	
Bran (at 75 \$/ton)		\$2,636,250	
Germ (at 160 \$/ton)		\$7,278,240	
Total Revenues	\$126,410,714	\$148,344,870	
Corn Cost (at 4.50 \$/bu)	\$80,357,144	\$93,045,114	
Operating Costs	\$30,500,000	\$29,150,000	
Total Costs	\$110,857,144	\$122,195,114	
EBITDA	\$15,553,571	\$26,149,756	
Increased Net Income from Fractionation Technique = \$10,596,185			
Present Value (PV) of Increa	ased Annual Revenue	= \$92,730,076	

Weight Information for Phase Diets

Growth Phase	Weight of Pig
Grower 1	(45-95 lbs)
Grower 2	(95-155 lbs)
Finisher 1	(155-205 lbs)
Finisher 2	(205-260 lbs)
Gestating Sow	(300-500 lbs)