Estimating and Comparing Alternative Ethanol Processes and Feedstock Choices

Integration of Agriculture and Energy Systems Conference
Atlanta, GA
February 12, 2008

Brian J. Frosch, Roland J. Fumasi, James W. Richardson, Joe L. Outlaw, Brian K. Herbst
Overview

• Background
• Objectives
• Data & Methods
• Operational Assumptions
• Results & Conclusions
Background

- Grain Based Ethanol – Out of Favor with Some
- Cellulosic Ethanol Feedstocks
 - Non-competitive with food supply chain
 - Sufficient crop density
 - Minimize transportation costs
 - Maximize energy yield
 - Catch 22: most productive cropland is most competitive
 - May be economically prohibitive for biorefinery
 - “Marginal” growing areas may be better suited
Background

• Early Studies Identified Switchgrass
 - Led by Oak Ridge National Laboratory in 1990s

• Subsequent Economic Research Centered Around Switchgrass
 - USDA (De La Torre Ugarte et al, 2003)
 - University of Tennesee (English et al, 2006)
 - Oklahoma Sate University (Mapemba et al, 2007; Epplin et al, 2007)
 - Additional Research: Iowa State, University of Nebraska

• Other Feedstocks: Texas A&M University, University of Florida, Louisiana State University
Objectives

• Estimate Delivered Cost of Alternative Feedstock Mixes

• Estimate the Total Cost of Producing Ethanol Across Alternative Production Processes
 – Grain ethanol process
 – Cellulosic ethanol – MixAlco process
 – Brazilian ethanol process
Data

• Feedstock Production
 – Texas A&M Agronomists
 – Grower Panel

• Ethanol Production Processes
 – Grain process: Bryan & Bryan International
 – Cellulosic MixAlco process: Lau dissertation
 – Brazilian process: Brazilian industry representatives

• Historical Prices
 – NASS, DOE-EIA, FAPRI, Hart Energy

• Price & Inflation Forecasts: FAPRI
Methods

• Feedstock Production Model
 - Partial budget analysis
 - Monte Carlo simulation
 - Estimates delivered cost for alternative feedstock mixes
 - Two stage contract: Fixed minimum contract price per acre & additional per unit payment on actual yield
 - Harvest & transportation cost

• Ethanol Processing Model
 - Biorefinery Monte Carlo simulation
 - Maintains standard accounting relationships to estimate financial performance
 - Estimates total processing cost across alternative production processes and feedstock mixes
Operational Assumptions: Grain Process

Grain Ethanol
- **Proposed Capital Cost**: $2.25/gallon of ethanol
- **Ethanol Processing Costs**: $0.61/gallon of ethanol

Grain Ethanol yield
- **Corn**: 2.75 gallons/bushel
- **Sorghum**: 2.75 gallons/bushel

DDGs yield
- **Pounds/bushel**: 18.00

Local Basis
- **Corn**: 0.05 $/bushel
- **Sorghum**: 0.15 $/bushel
- **Denaturant added**: 0.05 fraction
Operational Assumptions: Cellulosic Process

Cellulosic Ethanol

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Capital Cost $/gallon of ethanol</td>
<td>0.63</td>
</tr>
<tr>
<td>Percent Dry Matter</td>
<td></td>
</tr>
<tr>
<td>Sweet Sorghum fraction</td>
<td>0.30</td>
</tr>
<tr>
<td>Sweet Sorghum Hay fraction</td>
<td>0.85</td>
</tr>
<tr>
<td>Sweet Sorghum HB fraction</td>
<td>0.40</td>
</tr>
<tr>
<td>Sugarcane fraction</td>
<td>0.33</td>
</tr>
<tr>
<td>Ethanol Processing Costs $/gallon of ethanol</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Cellulosic Ethanol Yield

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield for Contracting Acres gallons/ton of dry matte</td>
<td>90.00</td>
</tr>
<tr>
<td>Yield Parameters for Production</td>
<td></td>
</tr>
<tr>
<td>Min gallons/ton of dry matte</td>
<td>70.00</td>
</tr>
<tr>
<td>Med gallons/ton of dry matte</td>
<td>90.00</td>
</tr>
<tr>
<td>Max gallons/ton of dry matte</td>
<td>110.00</td>
</tr>
<tr>
<td>Denaturant added fraction</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Operational Assumptions: Brazilian Process

Brazilian Ethanol
- **Proposed Capital Cost**: $6.07/gallon of ethanol
- **Percent Dry Matter**
 - Sweet Sorghum: 0.30 fraction
 - Sugarcane: 0.33 fraction
- **Brazilian Ethanol Yield**
 - Sweet Sorghum: 49.00 gallons/ton of dry matter
 - Sugarcane: 61.68 gallons/ton of dry matter
- **Cane Processing Costs**: $0.19/gallon of ethanol
- **Ethanol processing costs**: $0.38/gallon of ethanol

Grain Ethanol Backup
- **Grain Ethanol yield**
 - Corn: 2.75 gallons/bushel
 - Sorghum: 2.75 gallons/bushel
- **DDGs yield**: 18.00 pounds/bushel
- **Ethanol processing costs**: $0.61/gallon of ethanol
- **Denaturant added**: 0.05 fraction
Cellulosic Feedstock Mixes

Feedstock Mix 1
- Sweet Sorghum Hay 2 months
- Sugarcane 6 months
- Sweet Sorghum 4 months

Feedstock Mix 2
- Sweet Sorghum HB 2 months
- Sugarcane 6 months
- Sweet Sorghum Hay 2 months

Feedstock Mix 3
- Sweet Sorghum 2 months
- Sweet Sorghum Hay 8 months
- Sweet Sorghum HB 2 months

Feedstock Mix 4
- Sweet Sorghum Hay 8 months
Brazilian Feedstock Mixes

Feedstock Mix 1
- Sweet Sorghum 4 months
- Corn or Sorghum 8 months

Feedstock Mix 2
- Sugarcane 6 months
- Corn or Sorghum 6 months

Feedstock Mix 3
- Sweet Sorghum 4 months
- Sugarcane 6 months
- Corn or Sorghum 2 months
Delivered Feedstock Cost

<table>
<thead>
<tr>
<th>Feedstock Mix</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corn</td>
<td>$/bu</td>
<td>3.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorghum</td>
<td>$/bu</td>
<td>3.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cellulosic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweet Sorghum</td>
<td>$/ton dry matter</td>
<td>87</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>Sweet Sorghum Hay</td>
<td>$/ton dry matter</td>
<td>116</td>
<td>116</td>
<td>121</td>
</tr>
<tr>
<td>Sweet Sorghum HB</td>
<td>$/ton dry matter</td>
<td>-</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Sugarcane</td>
<td>$/ton dry matter</td>
<td>88</td>
<td>88</td>
<td>-</td>
</tr>
<tr>
<td>Brazilian</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweet Sorghum Billet</td>
<td>$/ton dry matter</td>
<td>89</td>
<td>-</td>
<td>89</td>
</tr>
<tr>
<td>Sugarcane Billet</td>
<td>$/ton dry matter</td>
<td>-</td>
<td>89</td>
<td>89</td>
</tr>
</tbody>
</table>
Estimated Total Cost of Ethanol Production

<table>
<thead>
<tr>
<th></th>
<th>Year 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain</td>
<td></td>
</tr>
<tr>
<td>Corn</td>
<td>2.02</td>
</tr>
<tr>
<td>Sorghum</td>
<td>1.96</td>
</tr>
<tr>
<td>Cellulosic</td>
<td></td>
</tr>
<tr>
<td>Feedstock Mix 1</td>
<td>2.46</td>
</tr>
<tr>
<td>Feedstock Mix 2</td>
<td>2.44</td>
</tr>
<tr>
<td>Feedstock Mix 3</td>
<td>2.65</td>
</tr>
<tr>
<td>Feedstock Mix 4</td>
<td>2.67</td>
</tr>
<tr>
<td>Brazilian</td>
<td></td>
</tr>
<tr>
<td>Feedstock Mix 1</td>
<td>2.37</td>
</tr>
<tr>
<td>Feedstock Mix 2</td>
<td>2.32</td>
</tr>
<tr>
<td>Feedstock Mix 3</td>
<td>2.54</td>
</tr>
</tbody>
</table>
Grain Ethanol Sensitivity

Total Cost of Ethanol Production

<table>
<thead>
<tr>
<th>Grain Price, FOB</th>
<th>Corn $/gallon</th>
<th>Sorghum $/gallon</th>
</tr>
</thead>
<tbody>
<tr>
<td>$/bu</td>
<td>4.00</td>
<td>4.25</td>
</tr>
<tr>
<td></td>
<td>4.50</td>
<td>4.75</td>
</tr>
<tr>
<td></td>
<td>5.00</td>
<td></td>
</tr>
<tr>
<td>$/gallon</td>
<td>2.27</td>
<td>2.30</td>
</tr>
<tr>
<td></td>
<td>2.35</td>
<td>2.39</td>
</tr>
<tr>
<td></td>
<td>2.44</td>
<td>2.48</td>
</tr>
<tr>
<td></td>
<td>2.53</td>
<td>2.56</td>
</tr>
<tr>
<td></td>
<td>2.61</td>
<td>2.65</td>
</tr>
</tbody>
</table>

- Cellulosic process average: $2.56
- Brazilian process average: $2.41
Conclusions

• Delivered Prices of Non-Grain Feedstocks are Economically Prohibitive versus Baseline Price Estimates for Grain

• Of the Alternative Ethanol Processing Scenarios Analyzed, Grain Ethanol Remains the Most Economically Feasible

• The Brazilian Ethanol Process Ranks Second, Yet Becomes Competitive at $4.50 Grain Prices

• If the MixAlco Cellulosic Process Becomes Commercially Viable, it Becomes Competitive at $4.75-$5.00 Grain Prices
Thank You