# Use of Distillers By-Products & Corn Stover as Fuels for Ethanol Plants



Douglas G. Tiffany University of Minnesota February 12, 2008





## Project Objectives

- Determine Technical Feasibility of Using Biomass to Provide Process Heat and Electricity at Ethanol Plants
- Determine Economics of Competing Choices of Feedstocks and Technologies under Various Economic Conditions
- 3. Our Sponsors:



### Today's Discussion

- Review Methods for Economic Comparisons of "Technology Bundles" and levels of biomass intensity
- Review Baseline Conditions; Defend my Assumptions
  - -Fed. Renewable Energy Credit
  - -Low Carbon Fuel Standard Premiums
- Demonstrate the impact of specific variables on ROR of the "technology bundles."



## Participating Plants

- Ace Ethanol----- Stanley, WI
- Badger State Ethanol-----Monroe, WI
- Corn Plus----- Winnebago, MN
- Chippewa Valley----- Benson, MN
- Agri-Energy------Luverne, MN

AGRI-ENERGY, LLC We Buy Corn

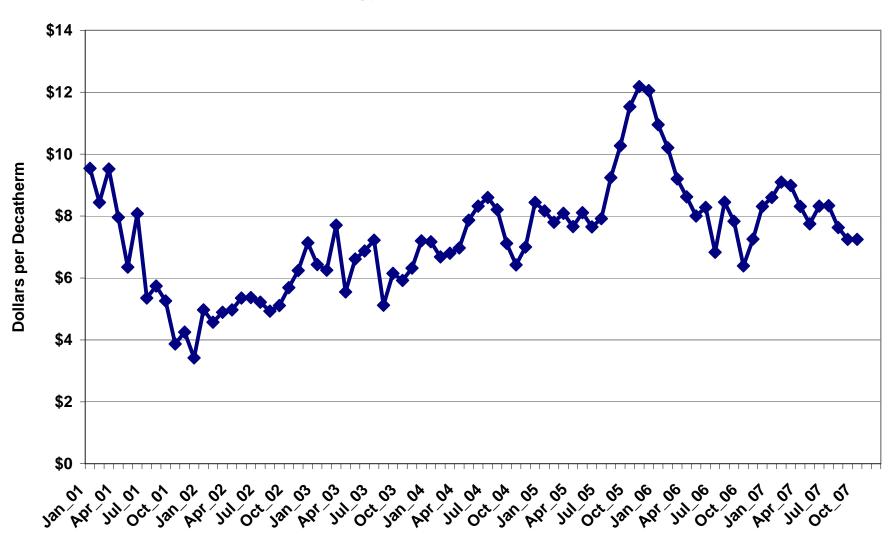




CHIPPEWA VALLEY ETHANOL COMPANY, LLC.

Morre · About Us · Coop Shares · GGS · Products & Marketing · Making Ethanol · Articles · Links · Contact Us

### Focus on Economic Analysis


- 1. Economic analysis <u>after</u> technical steps of biomass characterization, emissions control standards, Aspen Plus estimation of machine capacities for individual technology bundles.
- 2. Capital Costs estimated by AMEC.
- 3. Spreadsheets were developed to model the ROR's on investment needed to replace natural gas with biomass fuels in dry-grind ethanol plants for various technology bundles and fuels.
- 4. Sensitivity analysis of key variables was conducted.

### What Everyone Knows----

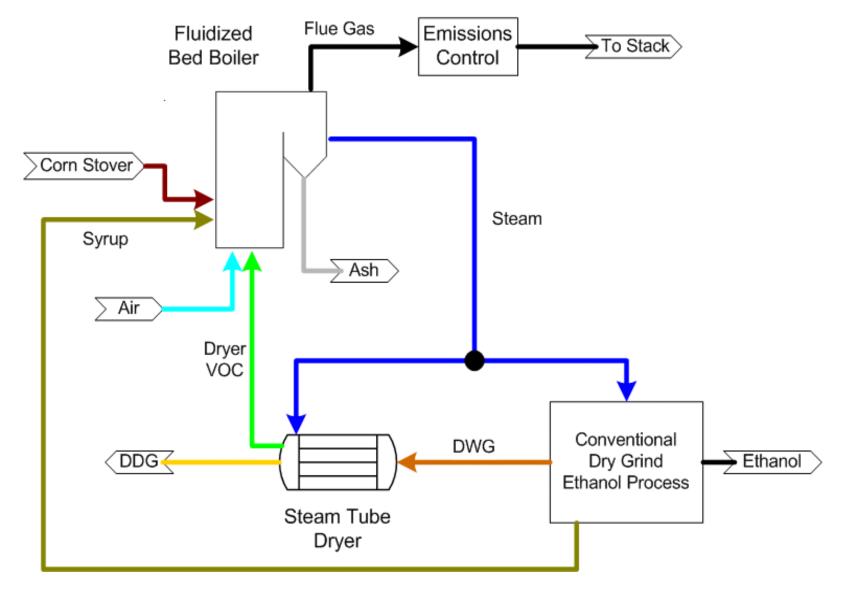
- Natural Gas is a great fuel.
- except for price levels and volatility. At higher NG prices, ethanol profits are threatened.
- Natural Gas is the second largest cost of ethanol production after corn in typical dry-grind plants.
- Natural Gas is a fossil fuel; contributes GHG.



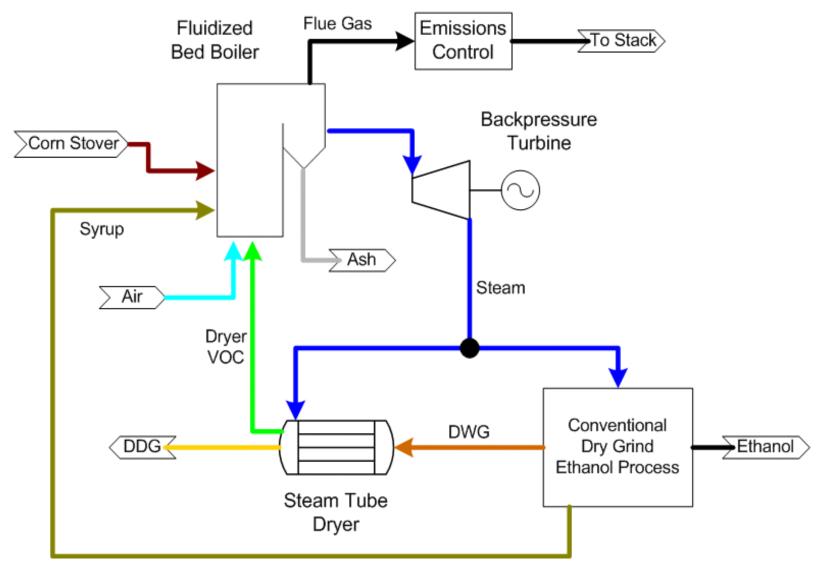
### Iowa natural Gas Industrial Price (Source: Energy Information Administration)



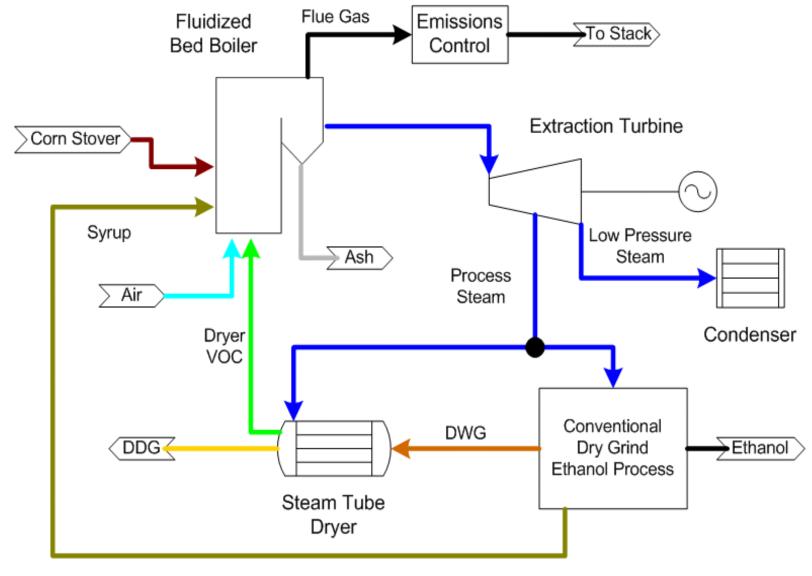
## Motivations for Using Biomass



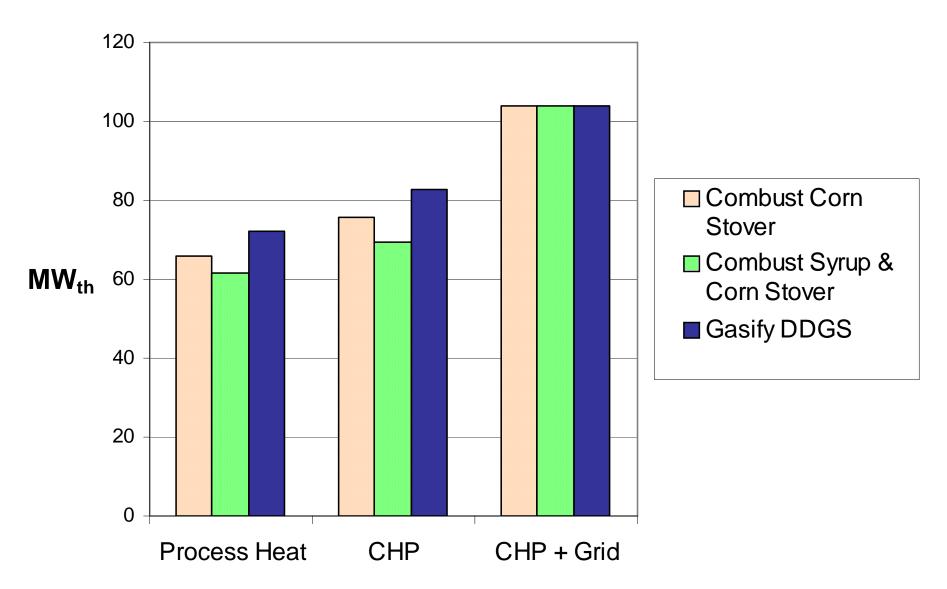

Minnesota Feb. 12, 2008


## Motivations for Using Biomass

- Potential to improve Renewable Energy Ratio
  - Defined as: Energy Out / Fossil Energy In
- Potential for 2.4 to 4.8 Renewable Energy Ratio depending on conversion efficiency (Morey et al. 2006)
- Generate reliable power for the grid
- Lower the overall greenhouse gas emissions from ethanol production

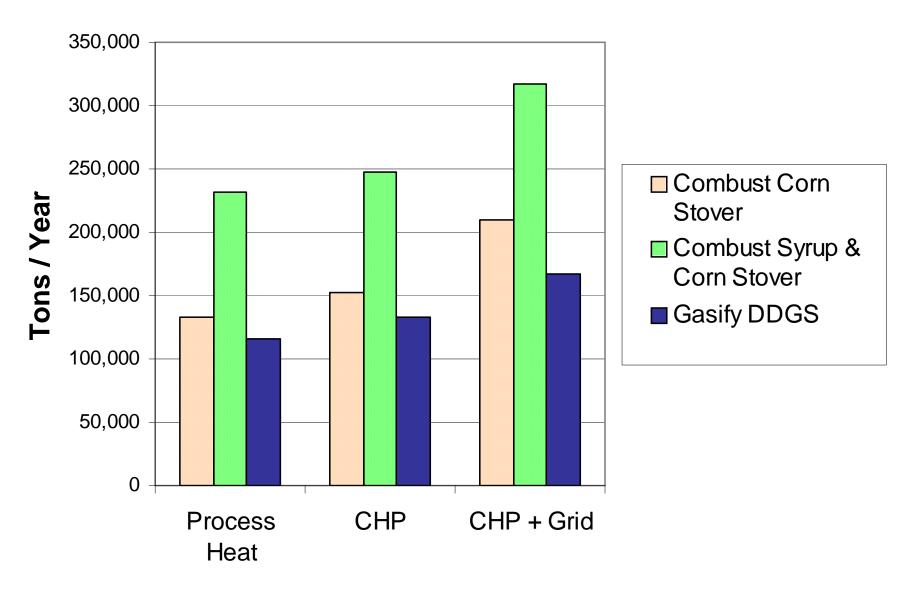

### Syrup + Stover-Level #1




### Syrup + Stover-Level #2

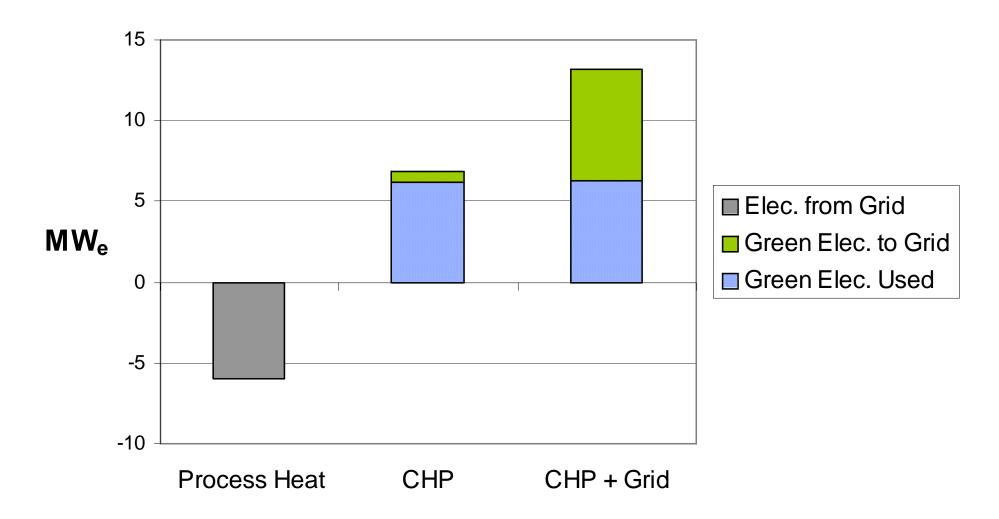


### Syrup + Stover-Level #3

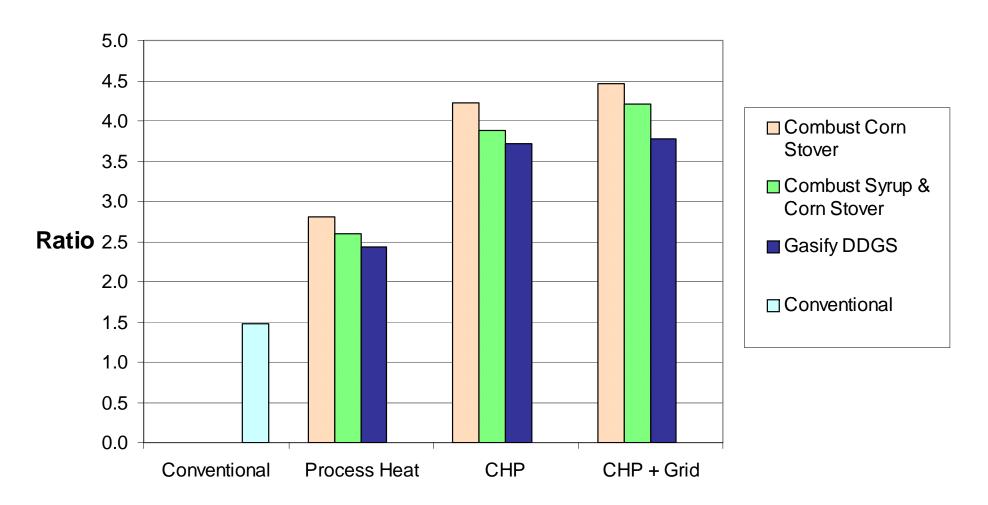



### **Biomass Fuel Energy Input (HHV)**




Douglas G. Tiffany University of Minnesota Feb. 12, 2008

#### **Biomass Fuel Use (Wet Basis)**




Douglas G. Tiffany University of Minnesota Feb. 12, 2008

### **Corn Stover Combustion: Electricity Balance**



#### **Renewable Energy Ratio (LHV)**



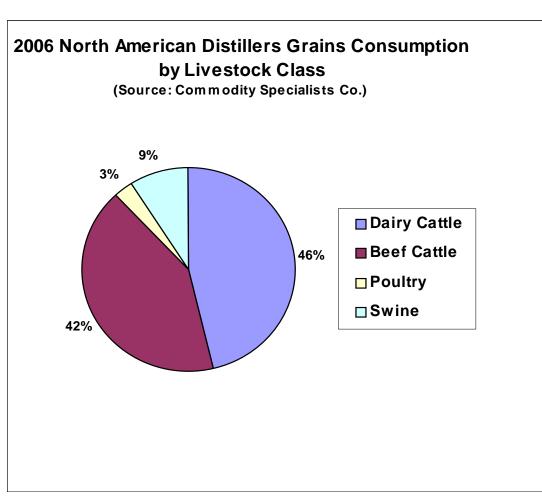
## Establishing Baseline Assumptions



Douglas G. Tiffany University of Minnesota Feb. 12, 2008

### **Biomass Has Costs**

 Opportunity Costs as Feed, Bedding, or Soil Enhancer

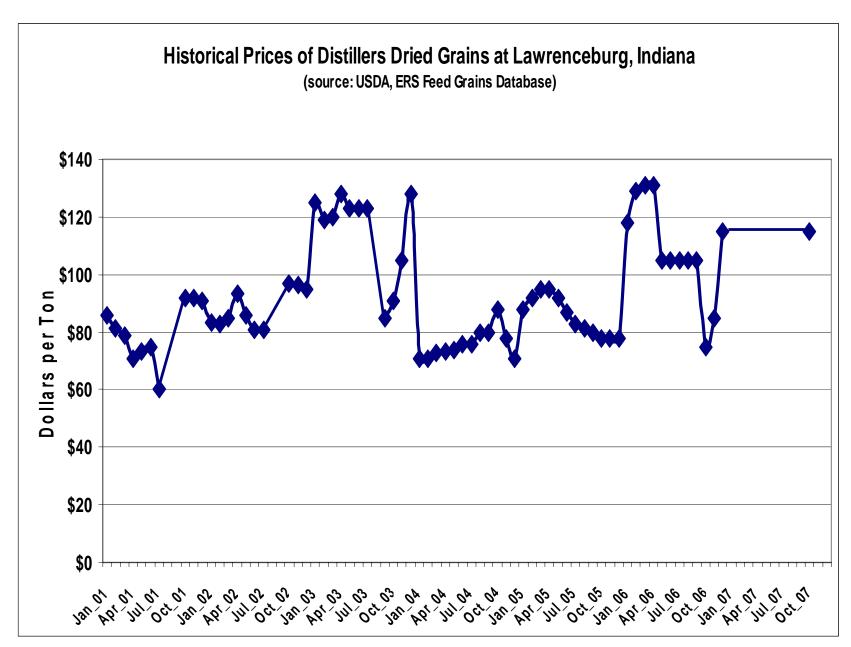

Procurement Costs

Transportation

- Storage
- Handling
- Emissions
- Ash Disposal
- However----, reliable, well-located supplies
- Stover Baseline at \$80 / Ton (densified)
- The Economics of Harvesting and Transporting Corn Stover for Conversion to Fuel Ethanol: A Case Study for Minnesota Petrolia, Daniel R.

### Distillers Dried Grains and Solubles

- Mid-level protein
- 28% Crude Protein
- 8.8% Fat
- 8.3% Fiber
- Poorer bulk density than corn
- Subject to greater variation than soybean meal



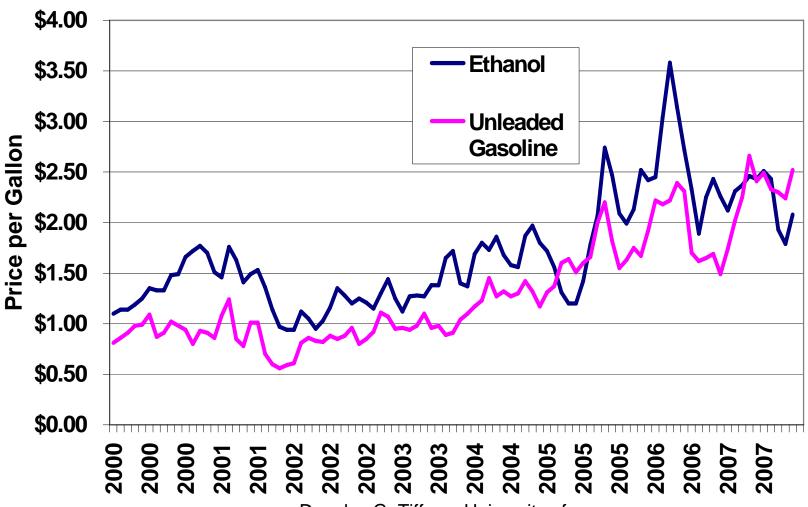

# When producing 10 Billion Gallons of Ethanol, 28.3 Million Metric tons of Co-Product Feeds with be Available by 2010/11

### Co-Product Usage Possibilities for U.S. Animal Species

(Based on Geoff Cooper, NCGA, Distillers Grains Quarterly, 1st 2006)

|         | Grain-Consuming Animal Units | 1,000 metric Tons by %<br>Market Penetration |        |        |        |
|---------|------------------------------|----------------------------------------------|--------|--------|--------|
|         | (Millions)                   | In Diet                                      | 50%    | 75%    | 100%   |
| Dairy   | 10.2                         | 20%                                          | 1,887  | 2,831  | 3,774  |
| Beef    | 24.8                         | 40%                                          | 9,176  | 13,764 | 18,352 |
| Pork    | 23.8                         | 20%                                          | 4,348  | 6,521  | 8,695  |
| Poultry | 31.1                         | 10%                                          | 2,877  | 4,315  | 5,754  |
| Total   |                              |                                              | 18,288 | 27,431 | 36,575 |




## **Ethanol Prices**



Minnesota Feb. 12, 2008

## Ethanol and Unleaded Gasoline Rack Prices F.O.B. Omaha, Nebraska, 2000-2007

Sources: Nebraska Ethanol Board, Nebraska Energy Office



Douglas G. Tiffany University of Minnesota Feb. 12, 2008

# The Ethanol Prices Received at the Plant May Approach BTU substitute level plus Blenders Credit of \$.51/ gallon.

• Ethanol prices <u>used to have</u> a premium of \$0.25 over the wholesale price of gasoline, but seems to be headed for equivalence as a BTU substitute.

| Refiners Acquisition Cost \$/Barrel | Wholesale<br>Gasoline<br><u>Price \$/Gallon</u> * | Ethanol Price Indicated as BTU substitute with VEETC |
|-------------------------------------|---------------------------------------------------|------------------------------------------------------|
| 50                                  | 1.49                                              | 1.50                                                 |
| 60                                  | 1.78                                              | 1.70                                                 |
| 70                                  | 2.07                                              | 1.89                                                 |
| 80                                  | 2.36                                              | 2.08                                                 |
| 90                                  | 2.65                                              | 2.28                                                 |
| 100                                 | 2.94                                              | 2.47                                                 |

<sup>\*</sup>Wholesale price of Regular gasoline = \$0.036 + \$0.029(Price of Crude oil/bbl)

Source: McCullough, Robert and Daniel Etra. When Farmers Outperform Sheiks: Why Adding Ethanol to the U.S. Fuel Mix Makes Sense. McCullough Research, Portland, Oregon, April, 2005, 12pp

# Ethanol Industry Is Expected to Continue Expanding Until Profits are Diminished by Higher Capital and Operating Costs, especially Corn Price:

 Net cost per gallon of ethanol depends on price of corn and fuel for the plant

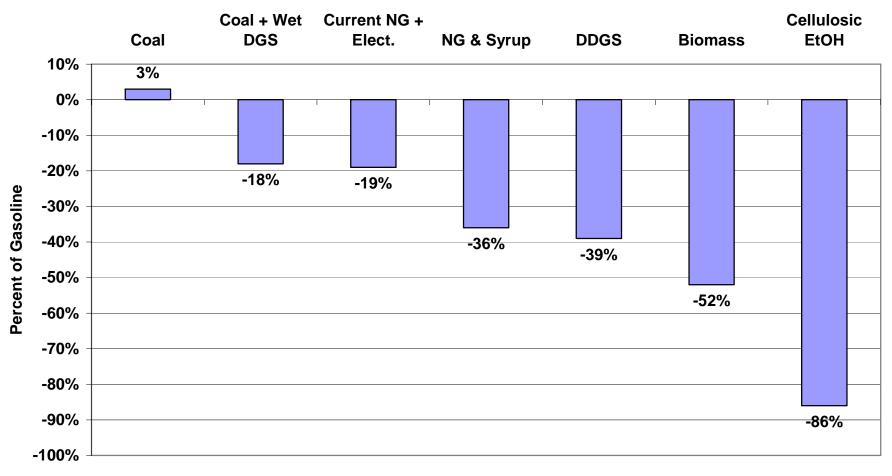
| • | <u> </u>   | Net Cost /Gallon For New Construction |                 |  |  |
|---|------------|---------------------------------------|-----------------|--|--|
| • | Corn Price | 50mmgpy                               | <u>100mmgpy</u> |  |  |
| • | \$2.00     | \$1.40                                | \$1.31          |  |  |
| • | 3.00       | 1.64                                  | 1.55            |  |  |
| • | 4.00       | 1.88                                  | 1.79            |  |  |
| • | 5.00       | 2.12                                  | 2.03            |  |  |
| • | 6.00       | 2.36                                  | 2.27            |  |  |

- Each increase of \$1.00 per mmbtu in Natural Gas increases the cost per gallon \$0.034
- The profit opportunities will be reduced if the blenders credit of \$0.51/gallon is reduced.

## Valuable Incentive: California's Low Carbon Fuel Standard






- Lower carbon intensity of fuels for passenger vehicles 10% by 2020 in grams of carbon emitted per BTU used. (LCA)
- Replace 20% of on-road gasoline with lower-carbon fuels
- Triples CA renewable fuels market
- Goal of producing 20% of biofuels in CA by 2010, 40% by 2020
- Use more hybrid vehicles
- Purchase of carbon credits from power generators who produce "low-carbon" electrons for plug-in hybrid vehicles

# California's Ethanol-Related Strategies to Achieve LCFS

- Increase blending of ethanol from today's 5.7 percent by volume to 10 percent.
- Sell high blend ethanol (85 percent ethanol, 15 percent gasoline) for use in Flex Fuel Vehicles (FFVs).
- Switch to Low-Carbon ethanol made from cellulosic materials (e.g., agricultural waste, switchgrass) that has 4-5 times lower GHG emissions than today's corn. \*
- Source: Farrell et al., "Ethanol Can Contribute to Energy and Environmental Goals," *Science*, Jan 27, 2006.

### Well to Wheels Greenhouse Gas Emissions Changes by Fuel Ethanol Relative to Gasoline

Source: Wang, Wu and Huo, Environmental Research Letters 2 (2007)



### Estimating Value of LCFS Premium

- Ethanol produced at plants using biomass for process heat and electricity can be 3 X more effective in reducing GHG than ethanol produced at conventional plants.
- One gallon of ethanol produced by using biomass can substitute for three conventional gallons.
- The shipping cost of two gallons to California (or elsewhere) can be saved.
- The premium for California delivery could be \$.40- \$.50 per gallon of biomass-processed ethanol based on current shipping costs of \$.20-\$.25 per gallon.
- For ethanol delivery to states closer to high production states, the premium should be less.
- Average shipping cost in U.S. was approximately \$.09 per gallon, (EPA, Sept. 2006), before shipping congestion worsened.
- Avg. premium if LCFS were adopted nation-wide could be approximately \$.20 per gallon.

# Technologies and Feedstocks Discussed Today

- Syrup + Stover Combusted in Fluidized Bed
- Corn Stover Combusted in Fluidized Bed
- DDGS Gasified in Fluidized Bed

### Cases: Using Biomass to Replace:

- 1. Process Heat for Plant
- Process Heat and Electricity Needs of Plant
- Process Heat, Electricity Needs of Plant with Sales to the Grid

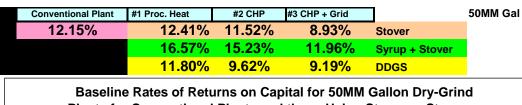
### Additional Capital Costs

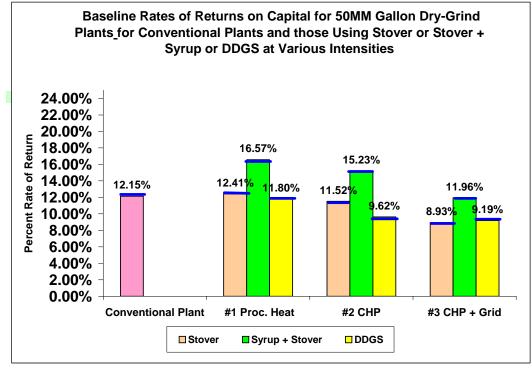
- Installed Estimates by AMEC with escalation and contingency factors applied
  - Capital Costs for Biomass Handling, Storage
  - Capital Costs of Biomass Combustion Equip.
  - Capital Costs of Electrical Generator
  - Capital Costs- Emissions Control Equipment for Biomass
  - Capital Costs for Ash Handling, Processing

# Capital Costs of Technology Bundles

|               | 50 Million Gallon Plants |             | 100 Million Gallon Plants |                 |             |                |
|---------------|--------------------------|-------------|---------------------------|-----------------|-------------|----------------|
|               | Capital Cost of          |             | Cost/Nameplate            | Capital Cost of |             | Cost/Nameplate |
|               |                          | Plant       | Gallon                    | Plant           |             | Gallon         |
|               |                          |             |                           |                 |             |                |
| Conventional  | \$                       | 112,500,000 | \$2.25                    | \$              | 182,756,789 | \$1.83         |
| Stover1       | \$                       | 147,120,000 | \$2.94                    | \$              | 238,997,145 | \$2.39         |
| Stover2       | \$                       | 162,938,000 | \$3.26                    | \$              | 264,693,562 | \$2.65         |
| Stover3       | \$                       | 180,590,000 | \$3.61                    | \$              | 293,369,321 | \$2.93         |
|               |                          |             |                           |                 |             |                |
| Syrup+Stover1 | \$                       | 136,522,000 | \$2.73                    | \$              | 221,780,643 | \$2.22         |
| Syrup+Stover2 | \$                       | 150,769,000 | \$3.02                    | \$              | 244,924,963 | \$2.45         |
| Syrup+Stover3 | \$                       | 168,372,000 | \$3.37                    | \$              | 273,521,121 | \$2.74         |
| DDGS1         | \$                       | 142,465,000 | \$2.85                    | \$              | 231,435,075 | \$2.31         |
| DDGS2         | \$                       | 156,279,000 | \$3.13                    | \$              | 253,875,985 | \$2.54         |
| DDGS3         | \$                       | 171,637,000 | \$3.43                    | \$              | 278,825,129 | \$2.79         |

### Revenue Gains / Cost Savings


- Reduced Natural Gas Purchases
- Reduced Electricity Purchases
- Premium for "Low Carbon" Ethanol Produced (\$.20- \$.40) per gallon
- Sales of Nutrients in Ash of 0-18-28 (\$200/T.)
- Sale of Renewable Electricity to the Grid (\$.06/KWH)
- Credit for Renewable Electricity of (\$.019 /KWH)
- Potential for More Valuable DDG product without solubles (20% premium assumed)


### Additional Operating Costs with Biomass

- Biomass Costs Must Include---
  - Procurement Activities for Corn Stover
  - Drying of Corn Stover / DDGS before Storage or Use
  - Densification of Stover for Transportation & Handling
  - Storage of Biomass
- Additional Labor and Maintenance
- Use of Limestone for Sulfur Capture @ \$20/ T.
- Use of Ammonia to reduce NOx @ \$500/T.

| <b>Assumptions Common Across All Pro</b>                                        | 1/10/2008          |                  |
|---------------------------------------------------------------------------------|--------------------|------------------|
| INSTALLED COSTS                                                                 | Active Val.        | Base Val.        |
| Debt-Equity Assumptions                                                         |                    |                  |
| Factor of Equity                                                                | 40%                | 40%              |
| Factor of Debt                                                                  | 60%                | 60%              |
| Interest Rate Charged on Debt                                                   | 8%                 | 8%               |
| Investor Required Return on Equity                                              | 12%                | 12%              |
| Depreciation based on asset life (years)                                        | 15                 | 15               |
| Output Market Prices                                                            |                    |                  |
| Ethanol Price (denatured price) \$/gal.                                         | \$1.80             | \$1.80           |
| DDGS Price \$/T                                                                 | \$100.00           | \$100.00         |
| Electricity Price (Plant is Seller) (\$ per kWh)                                | \$0.06             | \$0.06           |
| MN Renew. Energy Prod. Incent. (\$/kWh)                                         | \$0.000            | \$0.000          |
| Value of Ash (\$ per Ton)                                                       | \$200.00           | \$200.00         |
| CO2 Price (\$ per Ton liq. CO2)  Max. Premium for Low-Carbon (\$.00 per gallon) | \$8.00<br>\$0.20   | \$8.00<br>\$0.20 |
|                                                                                 | ψ0.20              | ψ0.20            |
| Government Subsidies                                                            |                    |                  |
| Federal Small Producer Credit (\$/gal.)                                         | \$0.10             | *                |
| RFS Ethanol Tradable Credit (\$/gal.)                                           | \$0.10<br>\$ 0.019 | \$0.10           |
| Fed. Renew Elect Cred Closed-Loop (\$/kWh)                                      | \$ 0.019           | \$0.019<br>0.25  |
|                                                                                 |                    |                  |
| Feedstock Delivered Prices Paid by Processo                                     | or                 |                  |
| Corn Price (\$ per bu.)                                                         | \$3.50             | \$3.50           |
| Energy Prices                                                                   |                    |                  |
| Natural Gas Price (\$ per 1,000,000 Btu)                                        | \$8.00             | \$8.00           |
| Stover Purchased @ (\$ per dry Ton)                                             | \$80.00            | \$80.00          |
| Electricity Price (Plant is Buyer) (\$ per kWh)                                 | \$0.06             | *                |
| LP (Propane) Price (\$ per gallon)                                              | \$1.10             | \$1.10           |
| Operating Costs/Input Prices                                                    |                    |                  |
| Denaturant Price / gal                                                          | \$1.80             | \$1.80           |
| Denat/100 gal Anhyd.                                                            | 5                  | 5                |
| Feedstock-to-Ethanol Conversion Yields                                          |                    |                  |
| Ethanol Yield (anhydrous gal per bushel)                                        | 2.75               | 2.75             |
| =======                                                                         | 2.10               | 2.70             |

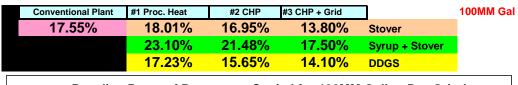
### Baseline ROR's Using Installed Capital Costs for 50 MM Gallon Plant

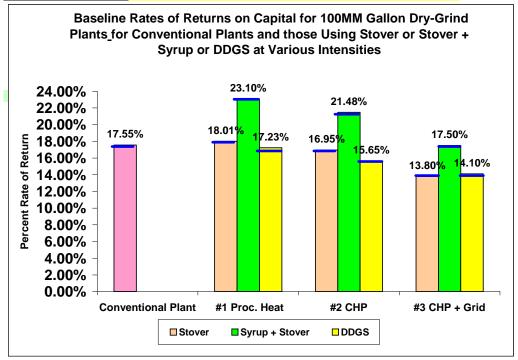




**Years to Payback Additional Investment** 

| Conventional Plant | #1 Proc. Heat | #2 CHP | #3 CHP + Grid | 50MM Gal       |
|--------------------|---------------|--------|---------------|----------------|
| Not Applicable     | 7.5           | 9.9    | 27.6          | Stover         |
|                    | 2.7           | 4.1    | 8.6           | Syrup + Stover |
|                    | 9.5           | 31.9   | 28.0          | DDGS           |


Douglas G. Tiffany University of Minnesota Feb. 12, 2008


# Years to Payback: Additional Investment Above Conventional in 50MM Gallon Plants

#### **Years to Payback Additional Investment**

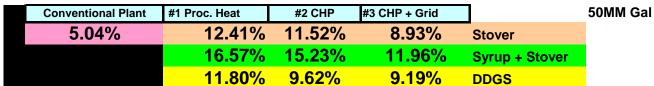
| Conventional Plant | #1 Proc. Heat | #2 CHP | #3 CHP + Grid | 50MM Gal       |
|--------------------|---------------|--------|---------------|----------------|
| Not Applicable     | 7.5           | 9.9    | 27.6          | Stover         |
|                    | 2.7           | 4.1    | 8.6           | Syrup + Stover |
|                    | 9.5           | 31.9   | 28.0          | DDGS           |

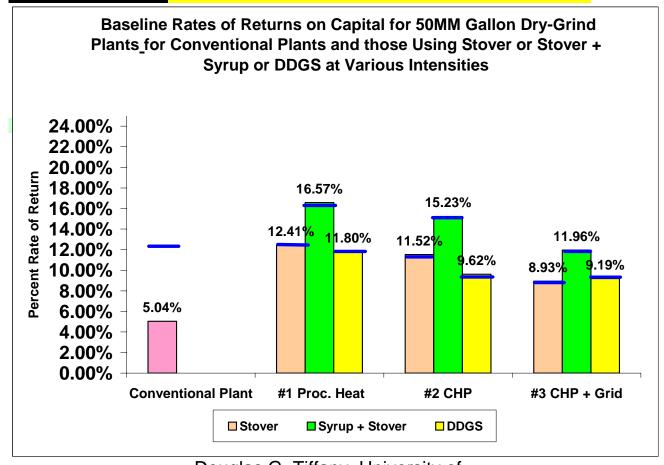
### Baseline ROR's Using Installed Capital Costs for 100 MM Gallon Plant





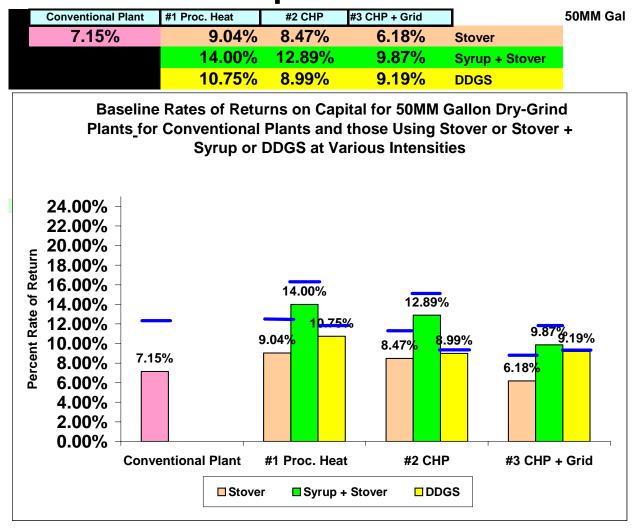
Years to Payback Additional Investment


|   |                    |               |        |               | _              |
|---|--------------------|---------------|--------|---------------|----------------|
|   | Conventional Plant | #1 Proc. Heat | #2 CHP | #3 CHP + Grid | 100MM Gal      |
| , | Not Applicable     | 5.1           | 6.4    | 13.1          | Stover         |
|   |                    | 2.0           | 3.0    | 5.7           | Syrup + Stover |
|   |                    | 6.2           | 9.3    | 13.3          | DDGS           |

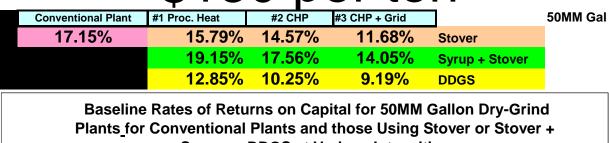

Douglas G. Tiffany University of Minnesota Feb. 12, 2008

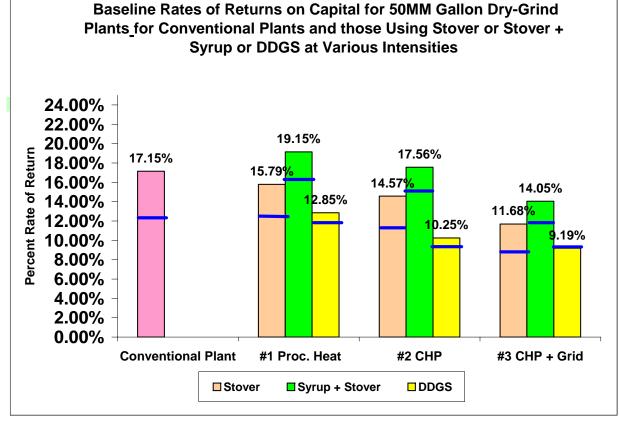
### Testing Sensitivity of Technology Bundles

- --DDGS price
- --Corn Stover price
- --Natural gas price
- --Ethanol Price
- -- Premiums for Low-Carbon Imprint
- --Electricity Selling Price
- --Corn Price


# Natural Gas Rises from \$8.00 to \$12.00 per DkTh



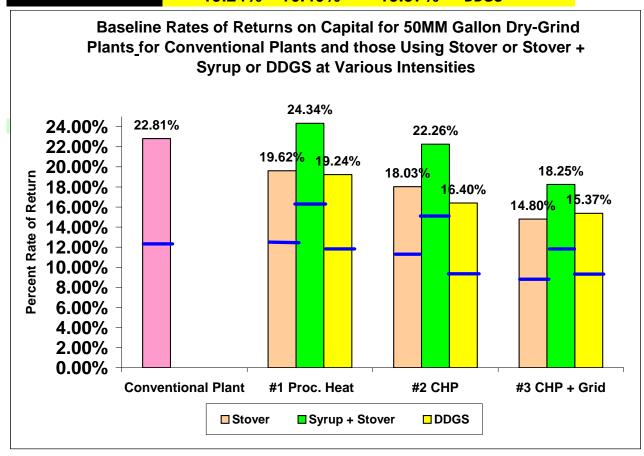




Douglas G. Tiffany University of Minnesota Feb. 12, 2008

# DDGS Price Shifts from \$100 to \$70 per Ton

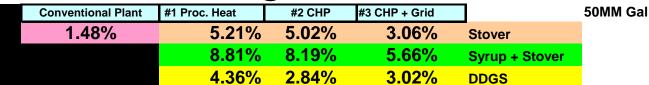


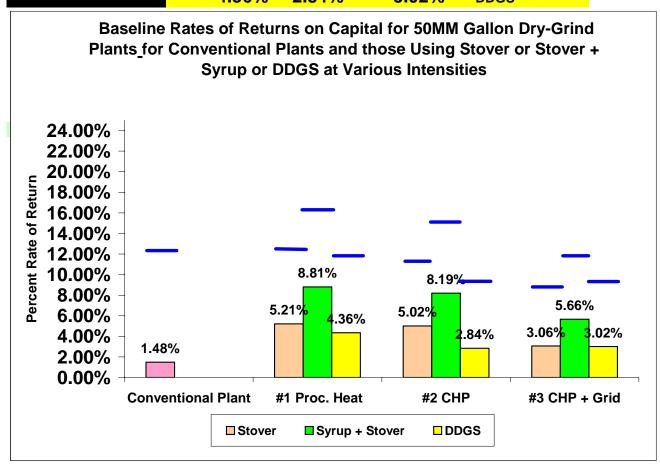
# DDGS Price Rises from \$100 to \$130 per ton





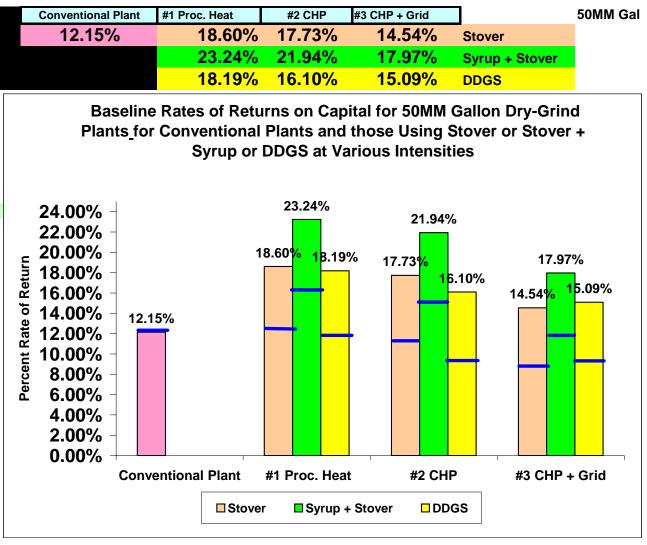

Douglas G. Tiffany University of Minnesota Feb. 12, 2008


## Ethanol Price Rises from \$1.80 to \$2.00/ gal. at Plant


|                    |               |        |               | _              |          |
|--------------------|---------------|--------|---------------|----------------|----------|
| Conventional Plant | #1 Proc. Heat | #2 CHP | #3 CHP + Grid |                | 50MM Gal |
| 22.81%             | 19.62%        | 18.03% | 14.80%        | Stover         |          |
|                    | 24.34%        | 22.26% | 18.25%        | Syrup + Stover |          |
|                    | 19.24%        | 16.40% | 15.37%        | DDGS           |          |

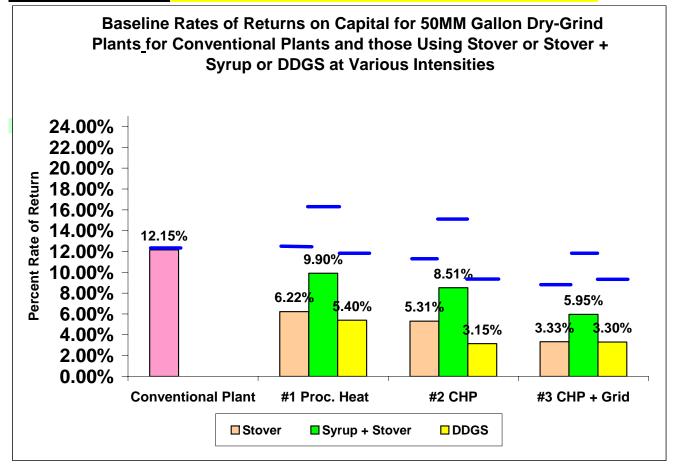


Douglas G. Tiffany University of Minnesota Feb. 12, 2008

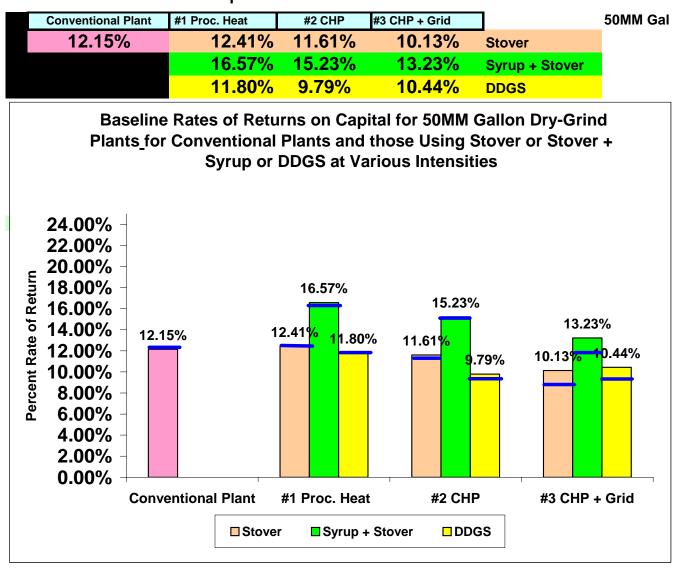

# Ethanol Price Shifts from \$1.80 to \$1.60/ gal. at Plant





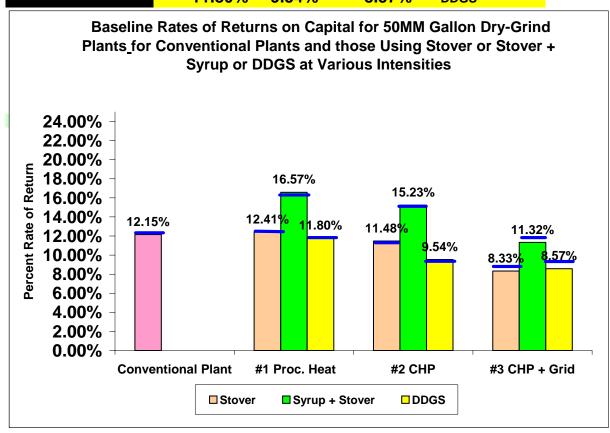

Douglas G. Tiffany University of Minnesota Feb. 12, 2008

### Low Carbon Premium Rises from \$.20 to \$.40/Gal.



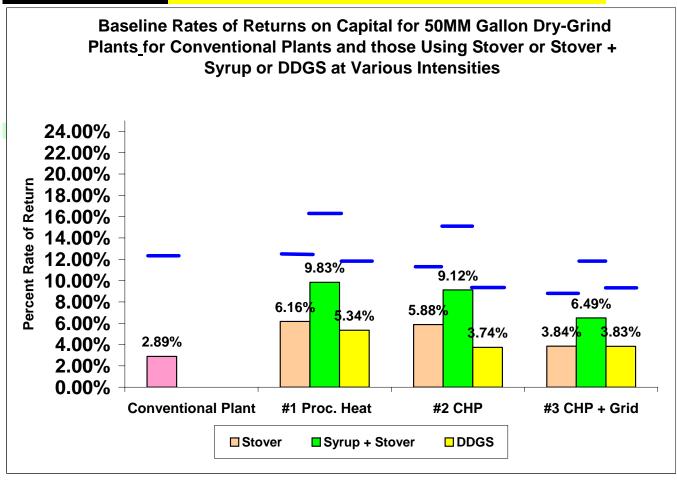

#### Low Carbon Premium is Zero

| Conventional Plant | #1 Proc. Heat | #2 CHP | #3 CHP + Grid |                | 50MM Gal |
|--------------------|---------------|--------|---------------|----------------|----------|
| 12.15%             | 6.22%         | 5.31%  | 3.33%         | Stover         |          |
|                    | 9.90%         | 8.51%  | 5.95%         | Syrup + Stover |          |
|                    | 5.40%         | 3.15%  | 3.30%         | DDGS           |          |




### Price for Power Produced Shifts from \$.06 to \$.10/KWH

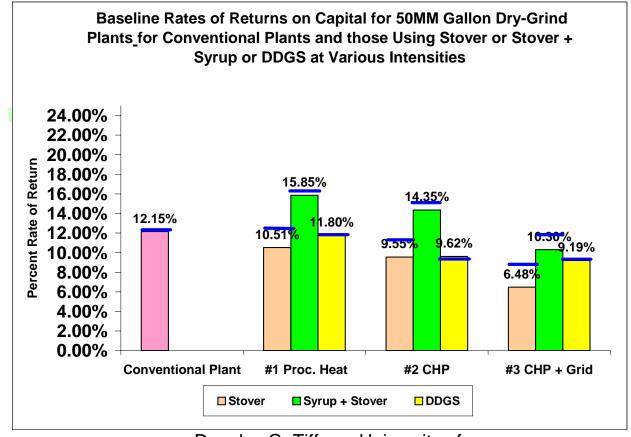



# Electricity Purchase Price Falls from \$.06 to \$.04/ KWH





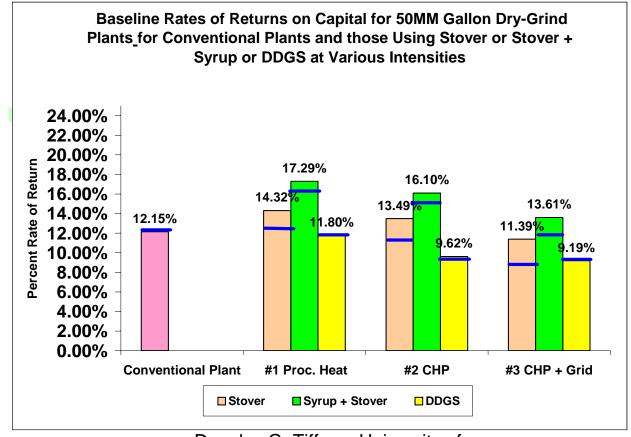
#### Corn Price Shifts from \$3.50 to \$4.00/bushel


| Conventional Plant | #1 Proc. Heat | #2 CHP | #3 CHP + Grid |                | 50MM Gal |
|--------------------|---------------|--------|---------------|----------------|----------|
| 2.89%              | 6.16%         | 5.88%  | 3.84%         | Stover         |          |
|                    | 9.83%         | 9.12%  | 6.49%         | Syrup + Stover |          |
|                    | 5.34%         | 3.74%  | 3.83%         | DDGS           |          |



Douglas G. Tiffany University of Minnesota Feb. 12, 2008

# Stover Price Rises from \$80 to \$100 per Ton


| 50MM G   |             | #3 CHP + Grid | #2 CHP | #1 Proc. Heat | Conventional Plant |
|----------|-------------|---------------|--------|---------------|--------------------|
| ,        | Stover      | 6.48%         | 9.55%  | 10.51%        | 12.15%             |
| + Stover | Syrup + Sto | 10.30%        | 14.35% | 15.85%        |                    |
|          | DDGS        | 9.19%         | 9.62%  | 11.80%        |                    |



Douglas G. Tiffany University of Minnesota Feb. 12, 2008

# Stover Price Drops from \$80 to \$60 per Ton

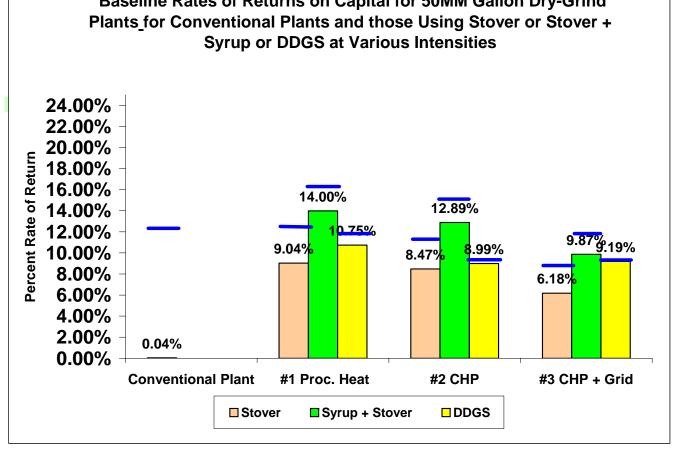
| _              |               |        | •             |                    |
|----------------|---------------|--------|---------------|--------------------|
| 50N            | #3 CHP + Grid | #2 CHP | #1 Proc. Heat | Conventional Plant |
| Stover         | 11.39%        | 13.49% | 14.32%        | 12.15%             |
| Syrup + Stover | 13.61%        | 16.10% | 17.29%        |                    |
| DDGS           | 9.19%         | 9.62%  | 11.80%        |                    |



Douglas G. Tiffany University of Minnesota Feb. 12, 2008

### IMPROVED BREAKEVENS WITH BIOMASS

 Q: How High Can Corn Price Rise with the Biomass Cases Still Breaking Even?


• A: \$4.74 per bushel (\$4.31in 100MM gal. plant)

 Q: How much money would the 50 MM gallon conventional plant lose at that price of corn?

A: \$12,159,424 per year.

#### Multiple Factors: \$70 DDGS, \$12.00 N.G.

| Conventional Plant                                                                                                               | #1 Proc. Heat | #2 CHP | #3 CHP + Grid |                | 50MM Gal |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|---------------|--------|---------------|----------------|----------|--|--|
| 0.04%                                                                                                                            | 9.04%         | 8.47%  | 6.18%         | Stover         |          |  |  |
|                                                                                                                                  | 14.00%        | 12.89% | 9.87%         | Syrup + Stover |          |  |  |
|                                                                                                                                  | 10.75%        | 8.99%  | 9.19%         | DDGS           |          |  |  |
| Baseline Rates of Returns on Capital for 50MM Gallon Dry-Grind Plants for Conventional Plants and those Using Stover or Stover + |               |        |               |                |          |  |  |



Douglas G. Tiffany University of Minnesota Feb. 12, 2008

### Summary

- Utilization of readily available biomass in the form of by-product syrup and corn stover at drygrind ethanol plants is <u>technically feasible</u> and <u>fiscally prudent</u>, especially when policies favoring low carbon fuel standards are adopted.
- Biomass in the form of syrup, stover, DDGS and possibly other sources can be used to improve energy balance and drastically reduce the carbon footprint of ethanol produced from corn.
- Dry-grind ethanol plants of 50MM gal. per year capacity can produce and sell 5-7 MW of electricity for the grid.

#### Thanks!!

# Please Check our Website for Further Information.

www.biomassCHPethanol.umn.edu



### BIOMASS FOR ELECTRICITY AND PROCESS HEAT AT ETHANOL PLANTS

- Acknowledgement
- This is a product of work supported by a grant entitled "Generating Electricity with Biomass Fuels at Ethanol Plants" funded by the Xcel Energy Renewable Development Fund. More information can be found at the project website: <a href="https://www.biomassCHPethanol.umn.edu">www.biomassCHPethanol.umn.edu</a>

Douglas G. Tiffany University of Minnesota Feb. 12, 2008