Irrigation Resources to Grow Biofuel: A National Overview

Noel Gollehon
Natural Resources Conservation Service, USDA
Transition to a Bio-Economy: Environmental and Rural Development Impacts
October 15, 2008
St. Louis, MO
Goal of presentation

• Provide a National perspective on irrigated agriculture
 – Acres
 – Water use
 – Crops

• What do trends and current conditions tell us about the water and land potentially used for biofuel production?
Irrigation overview

Trends in acres irrigated from 1900 to 2002 and water applied from 1969 to 2003

Source: USDA, Census of Agriculture and Farm and Ranch Irrigation Surveys, various years. Variation between Census of Agriculture years from 1969 to 2002 was based on EPS estimates.
Irrigation overview: Acres location

Source: NRCS based on 2002 Census of Agriculture data
Total and agricultural water withdrawals in 2000 and withdrawals with consumptive use estimates, 1960-1995

![Bar chart showing water withdrawals from 1960 to 2000 across different sectors, with consumptive use and return flow & losses distinguished.]

Source: USDA, NRCS, based on Hutson et al, 2004

* Data limitations do not allow estimation of consumptive use in 2000.
Sources of irrigation water and total water withdrawals, 2000

Source: NRCS analysis of USGS water use data
What is all that irrigation water used for?
U.S. Irrigated acreage, 2002

Source: NRCS analysis of Census of Agriculture Data

Percent of 2002 irrigated area

Source: NRCS analysis of Census of Agriculture Data
Regional Irrigated cropping patterns, 2002

Source: NRCS analysis of Census of Agriculture Data
Land & Water – now add energy production ...
Historic and projected uses for corn

Fuel alcohol: 4.1 Billion Bushels, 31% of crop

Source: USDA Baseline
Cellulosic ethanol, the future of bioenergy?

“In 3 to 5 years, technology advances should occur that will allow the conversion of cellulosic materials, tree trimmings, old newspapers, crop residues, etc., to alcohol on an economic basis.”

O.C. Doering III and R.M. Peart
“How Much Extra Energy Can Farms Produce?”
Cutting Energy Costs, 1980 USDA Yearbook of Agriculture
What does this mean for irrigation water demands?
Irrigated acres share and current & planned ethanol plant locations

Source: NRCS based on 2002 Census of Agriculture data and 2008 Renewable Fuels Association data.
How much water for an “average” corn field?

- 130 acre center-pivot field in Kansas
- 17 inch application in 2003
- \(27,152 \times 17 \times 130 = 59,299,970\) gallons per year per field applied (60 million gallons)
- Average irrigated Kansas corn yield in 2003 of 178 bu/acre
- This case 2,560 gal/bu

Source: USDA, NASS, Farm and Ranch Irrigation Survey
Gallons of irrigation water per bushel of irrigated corn, 2003

Source: ERS based on Farm and Ranch Irrigation Survey data
High Plains Aquifer remaining and current & planned ethanol plant locations

Source: NRCS based on 1999 USGS Digital map data and 2007 Renewable Fuels Association data.
Average irrigation water applications levels for selected crops, U.S., 2003

Source: ERS based on 2003 Farm and Ranch Irrigation Survey data.
Average irrigation water applications levels for selected crops, Kansas, 2003

Source: ERS based on 2003 Farm and Ranch Irrigation Survey data
Average irrigation water applications levels for selected crops, Oklahoma, 2003

Source: ERS based on 2003 Farm and Ranch Irrigation Survey data
Regional Irrigation Water Applications, 2003

Source: NRCS analysis of Census of Agriculture Data

[Diagram showing regional irrigation water applications with various crop categories represented by different colors and bars indicating irrigation application rates (ac-ft/ac).]
Projected Regional crop change, 2006 to 2007

Source: NRCS, based on NASS September Crop Production report
National crop acreage change from 2005

Corn:
- 2006: 0
- 2007: 15,000
- 2008: 5,000

Soybeans:
- 2006: 0
- 2007: -10,000
- 2008: 5,000

Cotton:
- 2006: 0
- 2007: -5,000
- 2008: 0

Wheat:
- 2006: 0
- 2007: 5,000
- 2008: 10,000

Source: NRCS, based on NASS March 2008 Projected Plantings report
Resource requirements for Biofuel production

- **Shifting** irrigated acres to biofuel production
 - Land - one for one primary shift (secondary impacts are likely as crop prices rise)
 - Nitrogen fertilizer needs.
 - Pesticide needs.
 - Erosion levels.
 - Irrigation water – depends on the specific crop shift and where it occurs
 - Soybeans to corn Northern Plains: ▲ irrigation water application
 - Potatoes to corn in Pacific: ▼ irrigation water application
Resource requirements for Biofuel production

- **Develop** new irrigated acres for biofuel production?
 - Land – irrigable acres available, but …
 - Irrigation Water – location specific availability
 - Water use is controlled by State laws.
 - Many States are now using a local planning process to establish management goals.
 - Declines in water availability in some locations to meet environmental and water quality concerns.
 - Irrigated field-crop returns relative to non-irrigated
Summary

• In the short run, increased agricultural production for biofuels will not alter the national view of water use.

• Growing crops for biofuel production will have a more significant regional and local impact.
 – In some cases an increase in water use.
 – In other cases a decrease, depending on the crops being grown now and the biofuel crops produced.
Thank you!

Noel Gollehon
202-720-8676
Noel.Gollehon@wdc.usda.gov