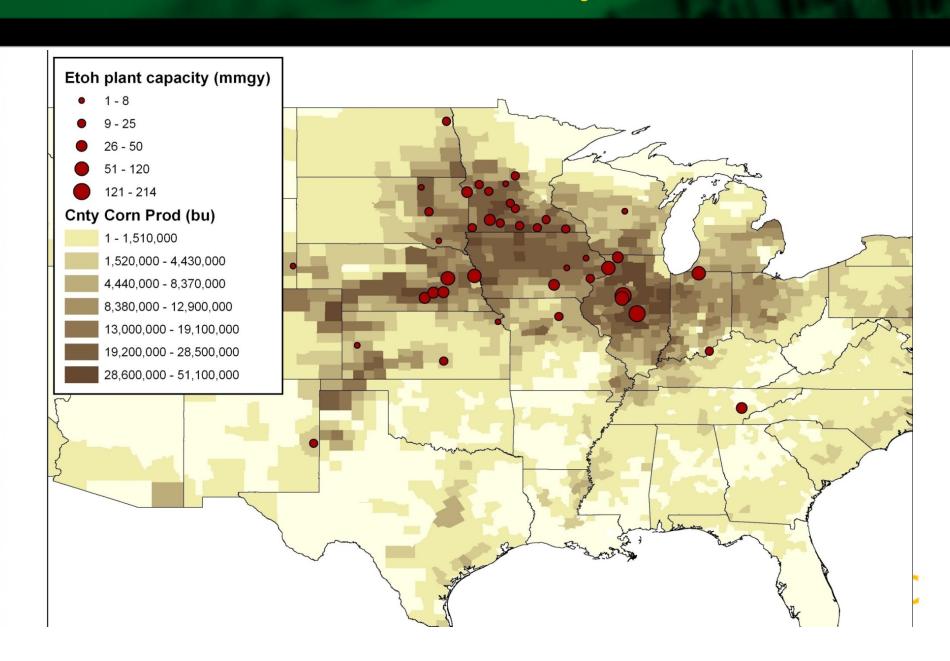
The Impact of GM Corn Traits on Biofuel Production

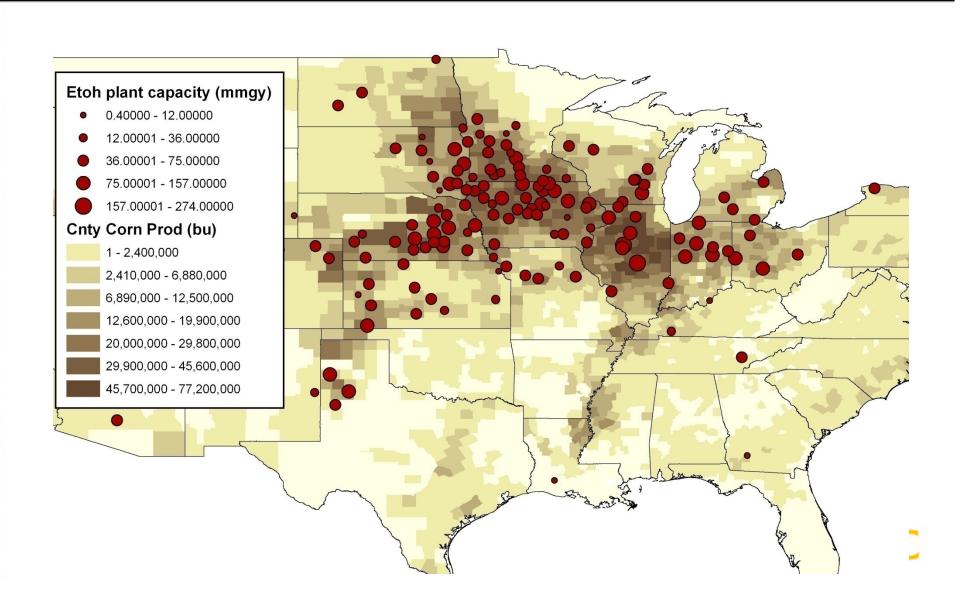
N. Kalaitzandonakes, J. Kaufman,

S. Meyer and W. Thompson,

University of Missouri



Economics and Management of Agrobiotechnology Center


Many of the results are preliminary-The project has been funded by the US Dept of Energy (DOE)

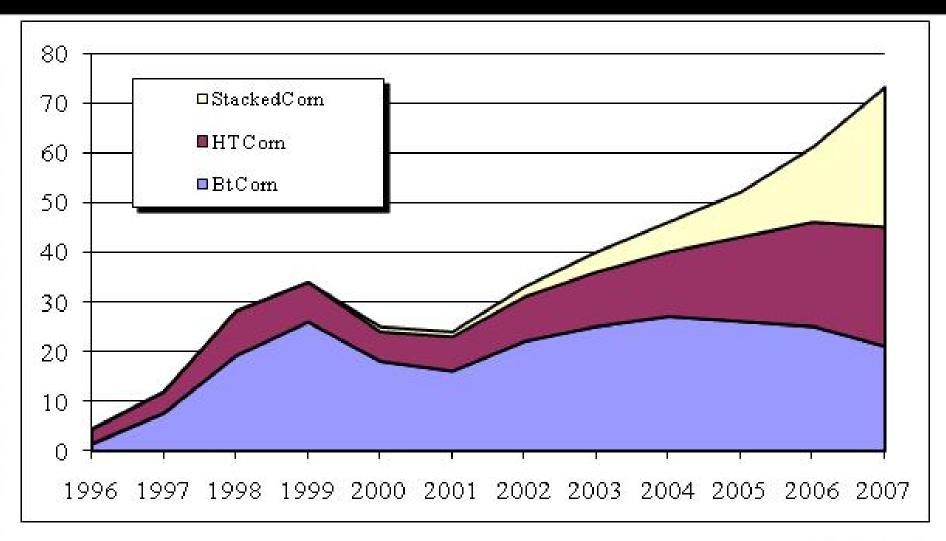
Ethanol Industry 2000

Ethanol Industry 2008

The Biofuels Debate

- Benefits from biofuels most widely cited
 - Petroleum independence
 - Environmental gains
 - favorable energy balance,
 - lower GHG,
 - renewability
 - Farm subsidy reform
- Many of these benefits have been actively debated in both academic and policy contexts
- Recent public debate regarding impacts of biofuels on food prices has been broad, insistent, and has mobilized anti-biofuels coalitions

The Ongoing Drive for Efficiency


- Most of future gains are expected to come from feedstocks
 - Corn yield growth has been key to efficiency gains so far

	1980	2007	Role
Ethanol yield, gal/bu	2.5	2.8	1/3
Corn yield, bu/ac	104	150	2/3
Total yield, gal/ac	260	420	

Ethanol yield per acre -- the focus of the discussion

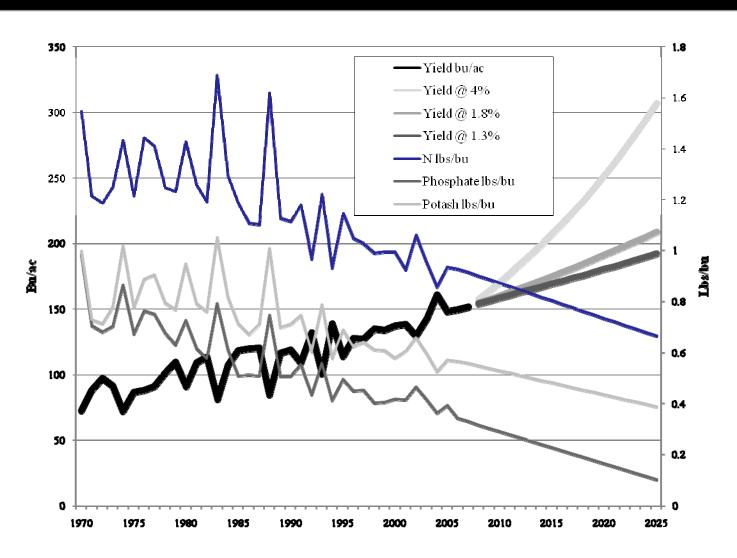
GM Adoption in Corn Production

Corn Biotech Pipeline

Short & Intermediate Corn Biotech Trait Pipeline

Syngenta	Expected Date	Monsanto	Development Phase	Dupont/Pioneer	Expected Date
VIP broad lep	2009	Drought tolerant corn	Р3	Stalk rot resistant	2009
Optimum GAT	2010	Drought tolerant corn II	P2	Increased etoh 2&3	<2018
Corn rootworm II	2012	Nitrogen efficient corn	P1	Corn rootworm II & III	<2018
Corn amylase	2009	High yielding corn	P2	Corn borer II & III	<2018
Increased ethanol	2011	Yieldgard BT II Yieldgard Rootworm	P4	Drought tolerance	2013-15
		III	P1	Nitrogen efficiency	<2018
		High lysine corn	P4	Increased yield	<2018
		High oil corn	P1	Improved feed	2011-2013
		Increased etoh	current	High extractable starch	current

How might this pipeline affect the production and use of corn ethanol?



Efficiency Gains – Measurement Issues

- Dimensions of Impact
 - Economic,
 - Environmental,
 - Energy
- Ethanol an energy product efficiency gains must be measured on energy balance basis.
- Life-cycle analysis is transparent, inclusive, and can be applied across all technologies/traits
 - LCA is well understood and reported

Key Assumptions In Our Analysis

Impact of Yield Enhancement

	Baseline	Historical Yield Trend		Conservative Yield Growth Scenario		Aggressive Yield Growth Scenario	
Yield Path (annual % growth)	1.3	1.3	1.3	1.8	1.8	4	4
Year	2007	2017	2025	2017	2025	2017	2025
Yield bu/ac	151	172	191.6	180.6	208.5	224	306.84
N g/bu	413.7	351.1	301.1	351.1	301.1	351.1	301.1
P g/bu	148.2	91.0	45.2	91.0	45.2	91.0	45.2
r g/bu K g/bu	251.9	209.2	175.0	209.2	175.0	209.2	175.0
Reductions in Corn Produ		207.2	173.0	207.2	173.0	207.2	173.0
Total energy		-14%	-25%	-16%	-27%	-22%	-36%
Petroleum		-10%	-19%	-14%	-22%	-24%	-37%
NOx		-14%	-26%	-17%	-29%	-24%	-40%
CO2		-11%	-21%	-13%	-22%	-18%	-30%
Reductions in Ethanol Production							
Total energy		-2%	-3%	-2%	-3%	-2%	-4%
Petroleum		-10%	-17%	-12%	-21%	-22%	-34%
NOx		-9%	-17%	-11%	-19%	-16%	-26%
CO2		-4%	-7%	-4%	-7%	-6%	-9%

Total Impact of Technology

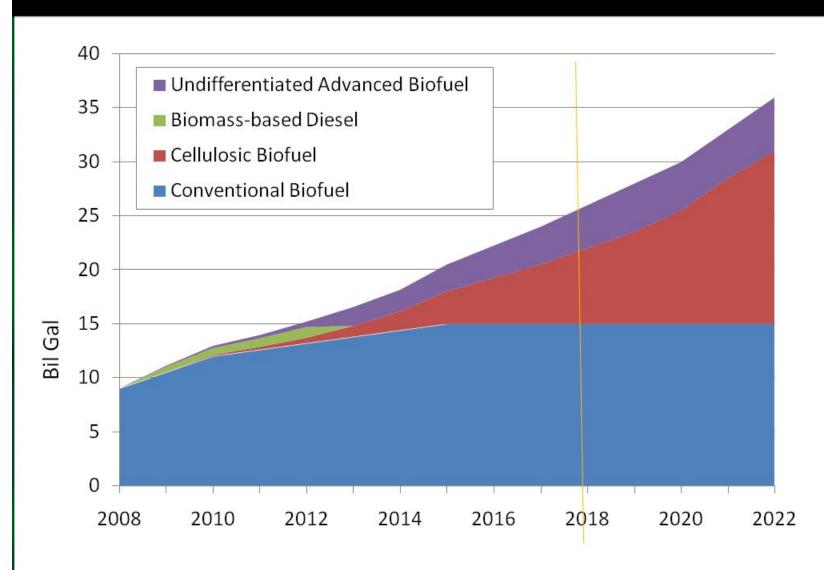
Impact of reductions in processing energy

- At an assumed .5% and 1% annual rate of reduction.
 - A 5% reduction in direct energy input =
 - A 2% reduction in gross energy needed to produce a gallon of ethanol and a 4% reduction in CO2
 - A 20% reduction in direct energy inputs =
 - 7% decrease in gross energy use and 14% reduction in CO2

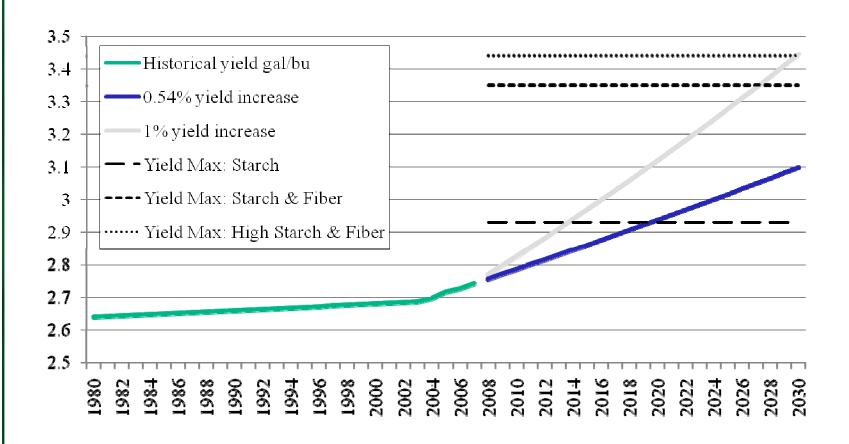
Total Impact of Technology

Year	2017	2025	2017	2025		
Corn Yield Path	1.8	1.8	4	4	Herbaceous	Corn
Conversion Energy Path	-1%	-1%	-1%	-1%	Biomass	Stover
Total energy	-5%	-9%	-6%	-10%	-14%	-23%
Petroleum	-13%	-22%	-23%	-36%	-23%	-19%
NOx	-14%	-25%	-19%	-32%	19%	16%

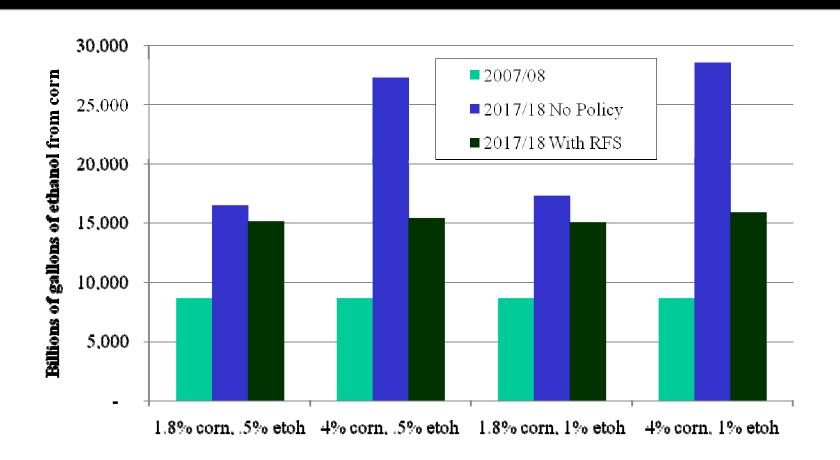
Implications


- New biotech pipeline will drastically lower the energy cost of production –especially on the farm.
- Most of gains are associated with corn yield improvements, especially if coupled with continued declines in per bu fertilizer requirements
- Still, much of corn ethanol's energy requirements are associated with the conversion process –especially natural gas
 - Indirect energy requirements are large.
 - Combined Heat and Power (CHP) and shift towards wet DDGS could meaningfully reduce energy requirement
- Corn ethanol will improve, but perhaps fall short of cellulosic ethanol's ability to:
 - Convert as much biomass to energy on a given acre
 - Operate a conversion facility with less energy.

Markets and Policy



The Energy Independence & Security Act of 2007



Technology Scenarios

Corn and Ethanol Yields With and Without Markets or Policies

How Markets and Policies Matter?

Greater supply

- Lower price
- Increase in all uses
 - feed, exports
- Decrease in competing sources
 - ethanol imports

Policy

Mandates as a minimum of use

Market Impacts

		Yield 1.8% Eth. 0.5%	Yield 4.0% Eth. 0.5%	Yield 1.8% Eth. 1.0%	Yield 4.0% Eth. 1.0%
Corn	Planted Area	0%	-3%	-1%	-3%
	Production	2%	13%	2%	13%
	Domestic Use	1%	8%	0%	7%
	Exports	5%	33%	7%	33%
	Price (\$/bu.)	-3%	-21%	-4%	-21%
Soybean	Planted Area	0%	2%	1%	3%
	Soybeans (\$/bu.)	0%	-2%	0%	-2%
Sorghum	Planted Area	-2%	-9%	-2%	-9%
	Sorghum (\$/bu.)	-2%	-13%	-2%	-13%
Ethanol	Production	0%	1%	0%	3%
	Corn Dry Milled	0%	2%	-2%	1%
	Corn Cost of Ethanol	-3%	-21%	-7%	-23%
	Ethanol (\$/gallon)	-2%	-12%	-4%	-13%
	Distillers Grains (\$/ton)	-3%	-20%	-2%	-19%
	Net Operating Return	1%	-8%	-3%	-5%
	Net Imports (Ethyl Alcohol)	-4%	-13%	-8%	-13%

Market Impact: No RFS

		Yield 1.8% Eth. 0.5%	Yield 4.0% Eth. 0.5%	Yield 1.8% Eth. 1.0%	Yield 4.0% Eth. 1.0%
Corn	Planted Area	0%	-1%	0%	-1%
	Production	2%	15%	2%	15%
	Domestic Use	2%	11%	2%	11%
	Exports	4%	27%	4%	28%
	Price (\$/bu.)	-3%	-19%	-3%	-19%
Soybean	Planted Area	0%	1%	0%	2%
	Soybeans (\$/bu.)	0%	2%	0%	2%
Sorghum	Planted Area	-2%	-8%	-2%	-8%
	Sorghum (\$/bu.)	-2%	-11%	-2%	-12%
Ethanol	Production	2%	13%	5%	15%
	Corn Dry Milled	2%	14%	2%	14%
	Corn Cost of Ethanol	-3%	-18%	-6%	-21%
	Ethanol (\$/gallon)	0%	-3%	-1%	-4%
	Distillers Grains (\$/ton)	-4%	-23%	-7%	-25%
	Net Operating Return	6%	41%	11%	47%
	Net Imports (Ethyl Alcohol)	2%	10%	4%	11%

