Robust Inspection for Invasive Species with a Limited Budget

L. Joe Moffitt, Ph.D.

Professor, Department of Resource Economics
University of Massachusetts, Amherst
PREISM Invasive Species Workshop
Washington D.C.

October 21 2005

Acknowledgments

 John K. Stranlund, Barry C. Field, and Craig D. Osteen

 USDA/ERS/PREISM Cooperative Agreement No. 43-3AEM-4-80115

 Massachusetts Agricultural Experiment Station Project No. MAS00861

Publications

- L. J. Moffitt, J. K. Stranlund, B. C. Field, and C. D.
 Osteen, "Robust Inspection for Invasive Species with
 a Limited Budget," in Alfons Oude Lansink (ed.), <u>The</u>
 <u>Economics of Plant Health</u>, Springer (in press).
- L. J. Moffitt, J. K. Stranlund, and B. C. Field, "Inspections to Avert Terrorism: Robustness Under Severe Uncertainty," <u>Journal of Homeland Security</u> <u>and Emergency Management</u> (in press).

Overview

- I. Problem Statement
- II. Key Assumptions
- III. Approach
- IV. Model
- V. Example
- VI. Conclusions

I. Problem Statement

 An inspector wants to preclude entry of an invasive species.

It's not feasible to inspect everything.

What inspection protocol should be used?

II. Key Assumptions

• 1. The probability of something being there to be found is uncertain (this is not a problem involving gambles with known probabilities).

• 2. The inspector is risk averse.

Decision Making under Uncertainty

- Maximin, Maximax
- Laplace; Hurwicz
- Katzner 1998; Horan et al. 2002
- Kelsey 1993

III. Approach: Info-Gap Decision Theory

- Probability distributions over rewards are not available.
- Seeks robustness the largest possible range of uncertainty over which a performance requirement is met.
- Satisficing rewards, not optimizing.

Components of Info-Gap

- System Model: Rewards that follow from decisions and events.
- Performance Requirement: A reward level deemed necessary.
- Uncertainty Model: A set whose elements are realizations of uncertain events.
- Robustness Function: The greatest level of uncertainty under which the performance requirement is achieved

IV. Model

- Represents inspection protocols as gambles with unknown probabilities.
- Uses stochastic dominance rules to compare protocols.
- Identifies most robust, dominant protocol.
- Solved as a simple mathematical programming problem.

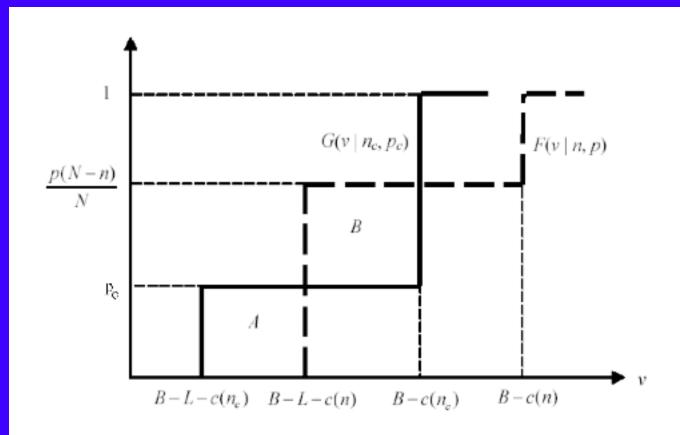
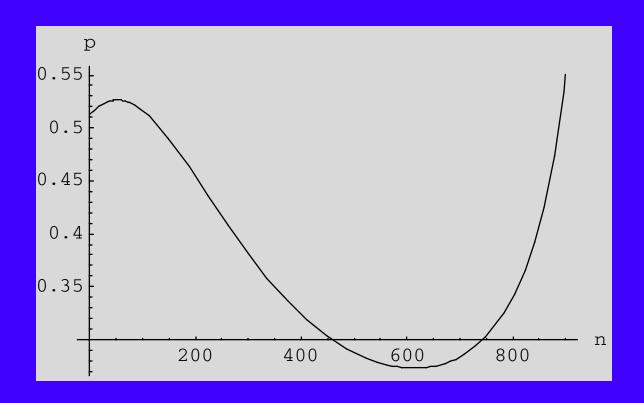



Figure 1: Depiction of the Stochastic Dominance Performance Requirement

IV. Example Robustness Function

Interpretation

- Vertical axis in the largest probability for which the performance requirement will be achieved.
- Robustness is not monotonic in inspection.
- Less may be more.

VI. Conclusions

- Info-gap approach offers a protocol for characterizing risk trade-offs despite ignorance of probabilities.
- Alternative decision making tool to conventional risk management.
- There could be a large range of inspections for which more inspections leave the inspector less secure.