Imperial College London

Consistent frameworks for evolving biosecurity decisions

USDA PREISM Workshop, 20-21 October 2005

John Mumford

Professor of Natural Resource Management Centre for Environmental Policy Silwood Park, Ascot, United Kingdom

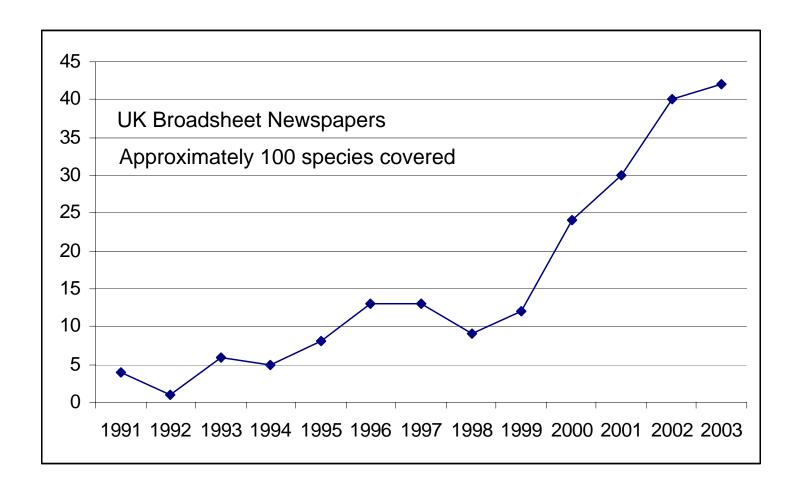
Criteria for ISM economic frameworks

- Relevant
 - Long-term, risk focus
 - Planning resource use for a range of acceptable objectives not just optimising
- Efficient
 - For the range of stakeholders
- Practical
 - For all users: from policy to applications
- Consistent
 - Invasive species management decisions are made repeatedly
 - Affects distribution of benefits and costs
 - Useful for regulatory compliance

Predictive projects: conceptual to practical

- UK DEFRA Future of Biosecurity
 - 30 year horizon scan looking at drivers for biosecurity
- ERMA NZ New Organism Release Assessment
 - Judicial review process for beneficial introductions
- UK DEFRA Non-native Organism Risk Assessment Scheme
 - First European effort on a common cross-taxa risk assessment scheme for intentional and accidental introductions

A new agenda for biosecurity


Phase 1

- Predict the nature, diversity, rate and pathways for key biological threats
- Develop an approach to predict the ecological and economic impacts of new biosecurity threats
- Assess the nature and magnitude of biological risks to the UK economy over the next 30 years

Phase 2

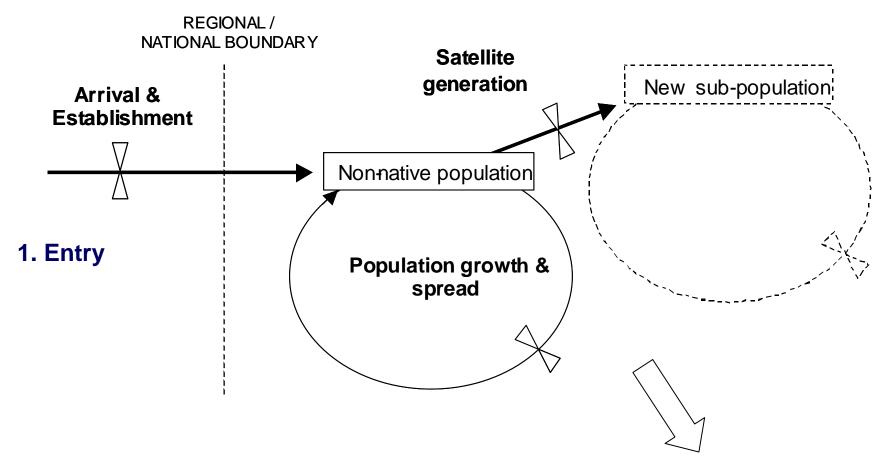
- Examine the value of current and proposed measures to prevent and manage biosecurity risks
- Propose approaches to reduce future risks and identify technology or policy which this may require

British media stories on invasive species

FMD and the Countryside Lobby

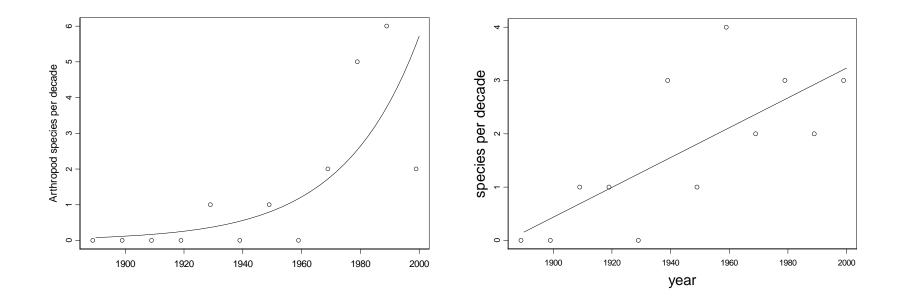
- Britain's biggest peace-time disaster
- Dissolution of MAFF, creation of DEFRA
- Perceived marginalisation by rural interest groups
- Foxes and the imposition of urban values

A long past has led to the present

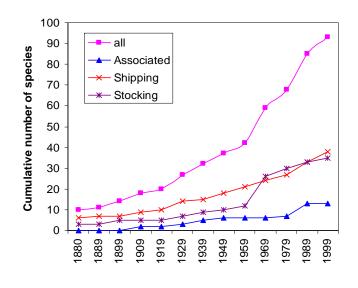

- No unified national quarantine service
- Distinct agencies, inspectors and control responsibilities
- Unbalanced priorities and placements
- Influence of fee collection and limited stakeholders
- Business plans based on operations rather than risk-reducing outcomes

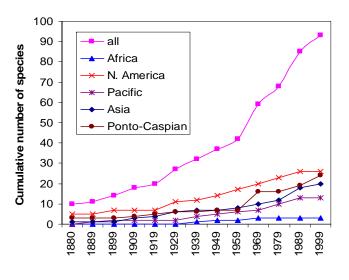
Three tasks

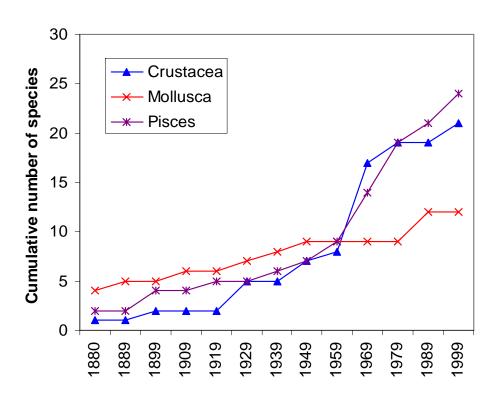
- Integrated ecological/economic model
- State of the Art reviews by DEFRA Agencies
- Environmental values review with NGOs
- Parallel project on integrated PRA approach


Conceptual model: DEFRA Future of Biosecurity

2. Ecological spread

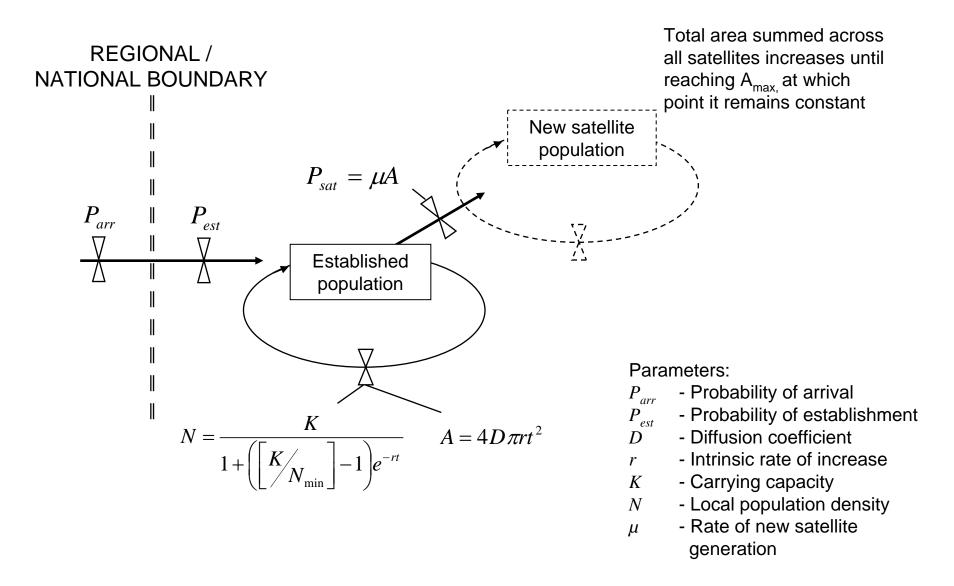

3. Economic impact assessment

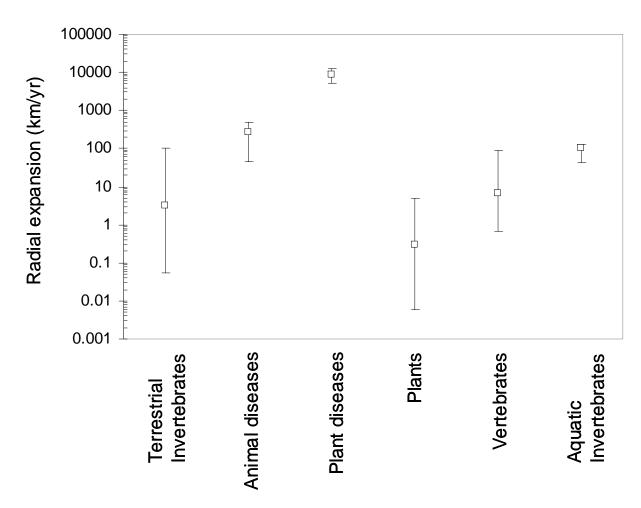

Data and hypothesis surveys – entry



First records of new arthropods (left) and plant diseases (right) in Europe by decade 1890-2000. Smith, 1997

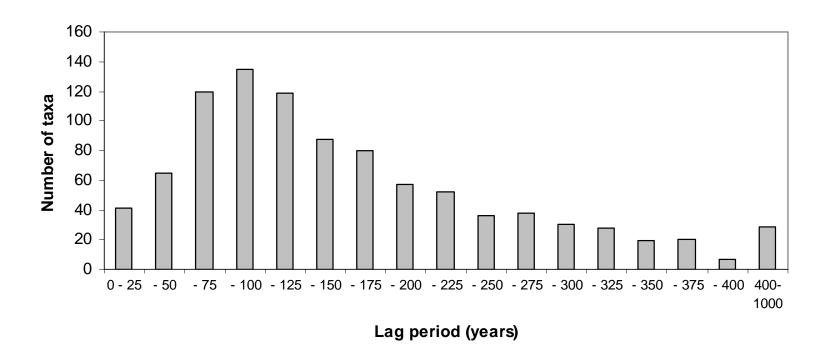
Data and hypothesis surveys - entry



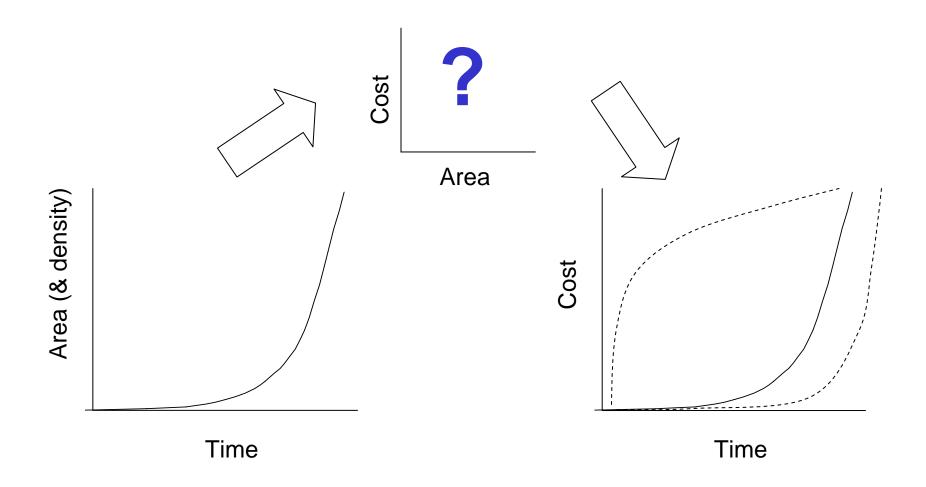


Olenin 2003, Klaipeda University, Lithuania

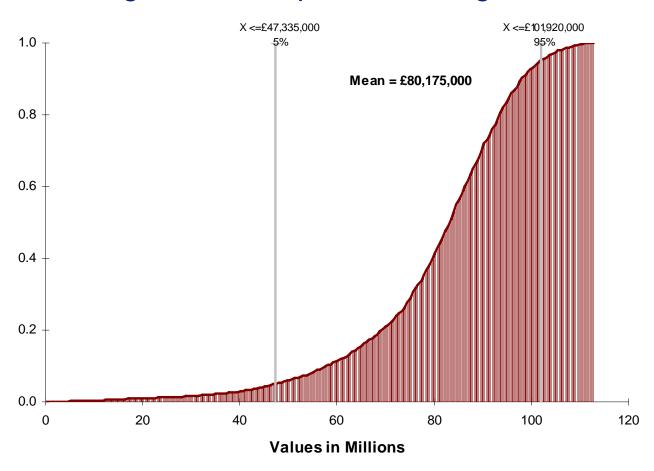
Ecological spread model



Data and hypothesis surveys - spread


Median annual radial spread rates in Europe for taxa included in this study

Data and hypothesis surveys - spread


Lag from first introduction to first record in the wild for new plant species in the British Isles. Preston *et al.*, 2002

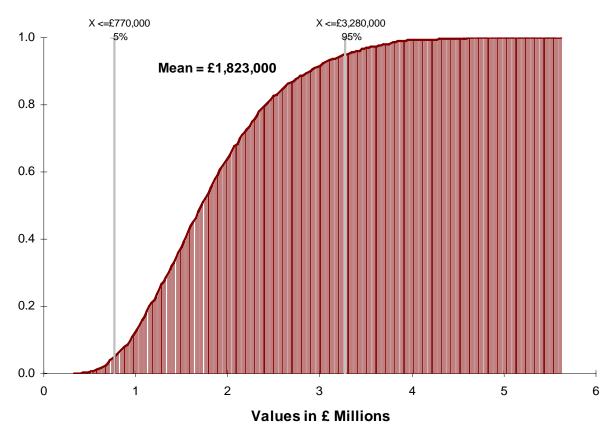
Linking ecology with economics

Newcastle Disease

Average annual expected damage £

Sensitivity analysis – Newcastle Disease

Parameters (-/+ 50%)


- P(entry)
- P(establishment)
- Average total cost vaccination
- Average total revenue loss yield
- Average total revenue loss export
- Animals infected at introduction (Amin)
- Max animals infected (Amax)
- Intrinsic rate of spread (r)
- Density at introduction
- Maximum density (K)
- Max satellite infections (Smax)
- Intrinsic rate of new satellites (µ)
- Infection diffusion coefficient (D)

Resultant change (% of value)

- -24.5/+16.4
- -23.5/+17.7
- -5.4/+4.0
- -0.1/+0.2
- -44.2/+45.5
- -0.9/+1.0
- -3.6/+4.1
- -4.1/+4.1
- -2.0/+1.5
- -1.0/+0.9
- -0.9/**+**1.6
- -11.5/+9.3
- -1.4/+0.7

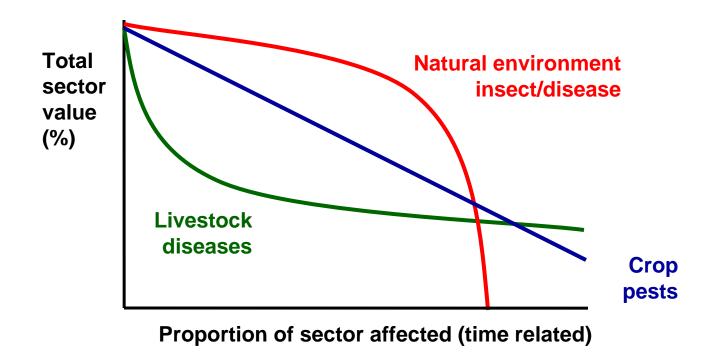
Wild Boar

Average annual expected damage

Sensitivity analysis – Wild Boar

Parameters (-/+ 50%)

- P(entry)
- P(establishment)
- Average total cost vaccination
- Average total revenue loss yield
- Average total revenue loss export
- Animals infected at introduction (Amin)
- Max animals infected (Amax)
- Intrinsic rate of spread (r)
- Density at introduction
- Maximum density (K)
- Max satellite infections (Smax)
- Intrinsic rate of new satellites (µ)
- Infection diffusion coefficient (D)


Resultant change (% of value)

- na
- na
- -5.5/+5.2
- -44.6/+43.3
- na
- -5.1/+4.4
- -87.7/+29.4
- -44.5/+44.1
- -0.3/+0.6
- -8.4/+4.8
- -0.7/+1.2
- -0.2/+0.2
- -22.7/+22.6

Annual modelled impact over 20 years

Species	Average Impact (£)	Environmental Effect	
Colorado Beetle	135,000	Nil	
Wild Boar	1,823,000	Low	
Newcastle Disease	80,175,000	Moderate	
FMD	1,030,000,000	Moderate	
Gyrodactylus salaris	20,522,000	High	
Creeping Thistle	30,350,200	Very Low	

Three general forms of invasion impact

Changing external dimensions of biosecurity

- Trade, travel and markets
 - More and different sources
 - New emphasis on rising pathways
- Climate
 - Greater over winter survival, more establishment
- Values
- Technology

Values – public vs private

- Current "key risks" reflect limited stakeholders
 - DEFRA sees Colorado potato beetle as a key pest;
 three of the six key plant pests are on potato
 - Public concern over Japanese knotweed, exotic crabs, oak galls and Sudden Oak Death
- Current controls reflect technical focus
 - DEFRA plan for FMD culling
 - Public revulsion of cattle culling and rejection of rural closure for "special interest" of agriculture

Values - private dynamics

- Public attitudes are variable, inconsistent, and variously informed
 - There is no clear public concept of biosecurity
 - Some potential stakeholders object to the concepts of "alien", "invasion", "eradication"
 - A widely travelled public likes many non-native species
 - Public expects a managed, not a "natural", environment
 - The public does not trust scientific interpretation of perceived problems and solutions

State of the Art reviews

- CEFAS on aquatic environments
- CSL on plant health, bee health, mammals, birds and related diseases
- IAH on exotic viral pathogens
- VLA on animal diseases and veterinary public health
- Parallel integrated PRA design project led by CSL involves the same groups, plus others

SoA Conclusions

Technology

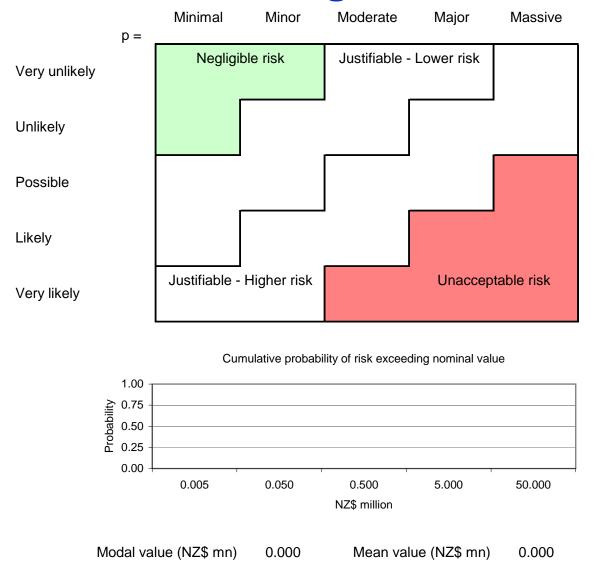
- Better databases needed to determine background risk
- Integrated PRA assessment models
- Tracing using electronic tags on containers, packaging
- Better biochemical detection and identification technology
- GIS use in eradication management
- Economic models for dynamic benefit/cost analysis
- Vaccination as standard preventative for livestock disease

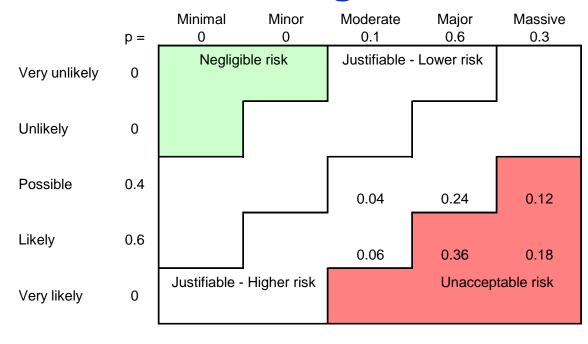
Legislation

 Harmonised EU layer to reduce internal EU transfer (one third of UK plant health cases from Netherlands)

Prevention versus eradication

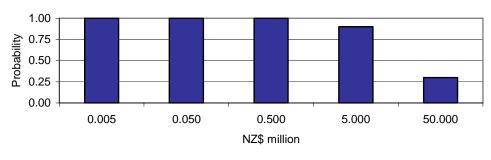
- SoA supports prevention
 - General prevention is worthwhile against a wide range of unspecifiable risks
 - Specific detection methods can not be justified against many unknown agents/pathways
 - Essential in low economic value cases which do not support rapid detection technology
- Future of Biosecurity keeps options open
 - Better tracing, control technology reveals threats/pathways,
 can make detection/eradication a more efficient option
 - Current actions are eradication, not prevention, focussed


Conclusions - Future of Biosecurity

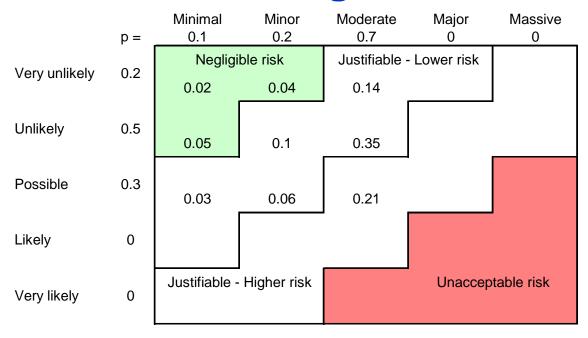

- Biosecurity problems are increasing in Britain
- Models must compare risks across taxa
- Export impacts have most immediate effect; environmental risks have long time horizons
- Environmental impact is growing due to changing public attitudes
- Prevention is not a priori better than eradication; objective analysis is needed because technology is improving both options

- Hazardous Substances and New Organisms Act 1996
- Environmental Risk Management Agency is the regulatory agency
- New Organisms for Release (NOR) and for Release with Control (NORC)
- Process intended for "beneficial" introductions
- ERMA provides guidelines to applicants

Score	Description	Monetary loss and response costs	Health impact	Environmental impact	Social impact
1	Minimal	Up to \$10k /yr	Local, mild, short-term, reversible effects to individuals	Local, short-term population loss, no significant ecosystem effect	No social disruption
2	Minor	\$10k-\$100k /yr	Mild short-term reversible effects to identifiable groups, localised	Some ecosystem impact, reversible changes, localised	Significant concern expressed at local level
3	Moderate	\$100k-\$1m /yr	Minor irreversible effects and/or larger numbers covered by reversible effects, localised	Measurable long-term damage to populations and ecosystem, but little spread, no extinction	Temporary changes to normal activities at local level
4	Major	\$1m-\$10m /yr	Significant irreversible effects locally or reversible effects over large area	Long-term irreversible ecosystem change, spreading beyond local area	Some permanent change of activity locally, concern expressed over wider area
5	Massive	\$10m + /yr	Widespread, severe, long-term, irreversible health effects	Widespread, long-term population loss or extinction, affecting several species with serious ecosystem effects	Long-term social change, significant loss of employment, migration from affected area

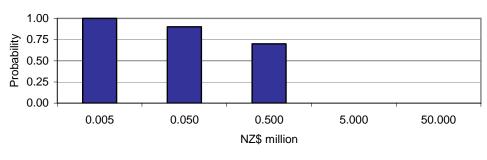

Score	Description	Definition	Frequency definition
1	Very unlikely	This sort of event is theoretically possible, but is never known to have occurred and is not expected to occur	1 in 10,000 years
2	Unlikely	Unlikely This sort of event has not occurred anywhere in living memory	
3	Possible	This sort of event has occurred ossible somewhere at least once in recent years, but not locally	
4	Likely	This sort of event has happened on several occasions elsewhere, or on at least one occasion locally in recent years	1 in 10 years
5	Very likely	This sort of event happens continually and would be expected to occur	Once a year

Unacceptable for release



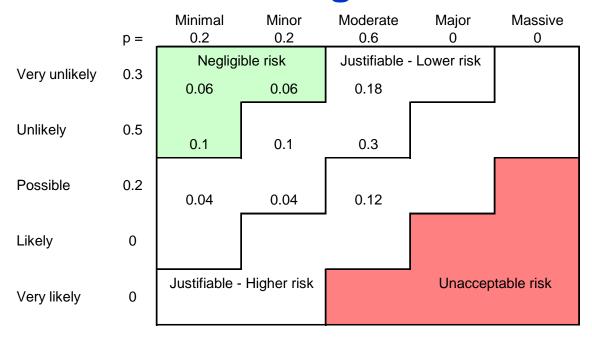
Modal value (NZ\$ mn)

1.800


Mean value (NZ\$ mn)

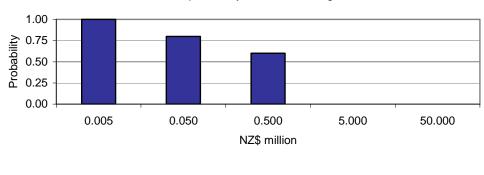
18.050

Acceptable for release



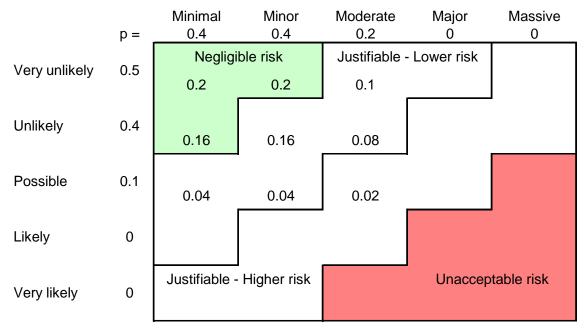
Modal value (NZ\$ mn)

0.175


Mean value (NZ\$ mn)

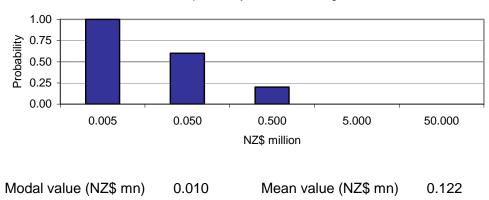
0.361

Monitoring reduces risk in controlled release



Modal value (NZ\$ mn)

0.150


Mean value (NZ\$ mn)

0.311

Monitoring plus spread prevention reduces risk more under controlled release

The value of risk reduction?

Uncontrolled release

- Some justifiable risk is acceptable
- No further questions asked?

Controlled release

- What level of risk is to be attained?
- How many options to consider?
- Least cost, least risk, max net benefit?

UK Non-native Organisms Assessment

Breakdown by major categories.

The assessments were divided into four main categories:

• Entry 17 questions

• Establishment 14

• Spread 4

• Impact 16

- Entry and establishment essentially define how likely it is that an organism will invade.
- Impact and spread on the other hand define the magnitude of the effect should it do so.

DEFRA UK Non-native Organism Assessment

Definitions of scale values

	Scale point				
Туре	0	1	2	3	4
likelihood	very unlikely	unlikely	moderately likely	likely	very likely
number	very few	few	moderate number	many	very many
extent	very rare	rare	occasional	frequent	widespread
frequency	very rarely	rarely	occasionally	often	very often
speed	very slow	slow	intermediate	rapid	very rapid
controllability	very easily	easily	with some difficulty	difficult	very difficult
importance	minimal	minor	moderate	major	massive
effect	minimal	minor	moderate	major	massive

Conclusions

- Level?
 - National level across taxa
 - Common international approach helps establish precedents
 - Trade-offs: specific case detail vs common application
- Specification?
 - Templates for data
 - Training in concepts and data presentation
 - Electronic tools for easy, transparent processing
- Sequence for design?
 - How much to invest before wide agreement on specifications
- Technical or political?
 - Is consistency merely technical or are there political dimensions?