Case Study: ARS Research on Water Quality and Watersheds

Assessing the Benefits of ARS R&D within an Economic Framework

John King
ARS Research on Water Quality and Watersheds

- National Program 211
 - “Water Availability and Watershed Management”
- Formerly organized under NP 201
 - “Water Resource Management”
»INTRODUCTION AND FINDINGS
CASE STUDY SELECTION
RESEARCH ACTIVITIES
EVALUATION CONCEPTS
CONCLUSIONS
ARS water research combines several elements of our analysis

- Market failure paradigm
 - Problems in water quantity markets
 - Water quality is essentially nonmarket

- Mission paradigm
 - “Enhance the natural resource base and the environment”
 - “Sustain a competitive agricultural economy”
 - Research supports other USDA programs
Many water use/water quality decisions take place outside functioning markets

- Water quality actors do not transact directly
 - Environmental benefits, services not rewarded
 - Water quality impairments not penalized
- Primary users of some ARS research include other USDA, Federal, and state agencies
- Lack of economically significant prices, quantities a challenge for economic evaluation
Water research suggests opportunities for evaluation in programmatic review

- Definition of counterfactual scenarios
- Inferring research value from policy context
 - Conservation Effects Assessment Project (CEAP)
- Small-bore studies on specific areas of interest are possible
 - Focused studies for specific topics
 - Narrow spatial effects
- Internal evaluation
INTRODUCTION AND FINDINGS

» CASE STUDY SELECTION

RESEARCH ACTIVITIES

EVALUATION CONCEPTS

CONCLUSIONS
Why water quality and watersheds?

- Rounds out the scope of ARS research
 - Natural Resources and Sustainable Agricultural Systems
- Examines the “market failure” paradigm in an area of environmental externalities
- Illustrates interaction of science with policy; supports ARS mission areas
Physical, economic, and social properties of water present difficult issues

- Physical properties:
 - Universal solvent: problems are difficult to contain
 - Surface, subsurface, atmospheric channels
 - Nonpoint source: sources are difficult to establish

- As a commodity, barriers to market efficiency
 - Seasonal, regional correlation of supply and demand
 - Low total value to weight
 - Complex historical, legal allocation of property rights

- Universal necessity: Water used in every sphere of human activity
 - Each sector of use may have different, competing requirements
 - Multidisciplinary research
 - Multiple regulatory authorities
With such a broad topic, we tried to narrow the field somewhat.

- Wanted to focus on water quality rather than water quantity/irrigation
 - Away from water-as-commodity
 - Towards market failure paradigm
- Difficult to separate water quality and quantity in practice
In the end, we focused on a few research activities with a water quality emphasis:

- Biophysical models of water and pollutant processes
- Subsurface drainage
- Watershed studies
Water Quality Pollutants

Sediment

Nutrients
Water Quality Pollutants

Sediment Nutrients Pesticides
Water Quality Pollutants

Sediment Nutrients Pesticides Pathogens
Water Quality Pollutants

Sediment Nutrients Pesticides Pathogens Salts
INTRODUCTION AND FINDINGS
CASE STUDY SELECTION
» RESEARCH ACTIVITIES
EVALUATION CONCEPTS
CONCLUSIONS
Current water quality emphasis evolved from historical USDA research

- Research on soil productivity and erosion date back to the creation of the USDA
 - Prevention of soil loss, erosion, salinity
 - Optimal application of nutrients
- “Tile drain” systems expanded rapidly after the Civil War
- All three areas have modern precursors dating from at least the 1950s
- Illustrates long research lags, changing paradigms
Biophysical models are multidisciplinary efforts in widespread use

- Model the sources and effects of water quality pollutants
 - Rainfall, temperature, soil types, agricultural practices, physical and biological processes
- Models available free of charge
- Large networks of researchers improve, integrate, and customize models
 - Universities, other public agencies
 - Some secondary use: state environmental agencies, consultants, international users
- Often directed to other USDA agencies, but applied widely throughout Federal government
(2) Subsurface drainage

- Subsurface drains manage water tables for
 - Productivity
 - Runoff
 - Salinity
 - Irrigation

- Extensively used in large areas of US

- Represented in some biophysical models
 - RZWQM, DRAINMOD, ...
(3) Watershed studies provide necessary spatial scale for ag water quality effects

- Hydrologic, biologic processes occur over large areas
- Nonpoint sources and competing uses are regional
- Incorporates regional farming practices

1990 HUA: Hydrologic Unit Areas
1990 MSEA: Management Systems Evaluation Areas
2003 CEAP: Conservation Effects Assessment Project watershed studies
Conservation Effects Assessment Project (CEAP)
USDA water research spending 1973-2003

Millions $2003

Source: CRIS data, ERS

Federal Ag Water Spending ($2003)

Source: CRIS data, ERS
ARS research funds fewer projects, in more research problem areas (RPA)

<table>
<thead>
<tr>
<th>Funding Type</th>
<th>Projects</th>
<th>$2003/ Project</th>
<th>RPAs/ Project</th>
<th>RPA “span”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula Funds</td>
<td>17,769</td>
<td>$62,535</td>
<td>2.05</td>
<td>75%</td>
</tr>
<tr>
<td>ARS</td>
<td>8,245</td>
<td>$527,883</td>
<td>1.71</td>
<td>89%</td>
</tr>
<tr>
<td>Coop’ative Agreement</td>
<td>1,232</td>
<td>$116,888</td>
<td>1.64</td>
<td>47%</td>
</tr>
<tr>
<td>Comptitive Grant</td>
<td>1,078</td>
<td>$46,276</td>
<td>2.30</td>
<td>32%</td>
</tr>
<tr>
<td>Other</td>
<td>2,098</td>
<td>$91,088</td>
<td>2.19</td>
<td>51%</td>
</tr>
</tbody>
</table>

*”Span” := # of RPAs funded relative to 158 total RPAs addressed

Source: CRIS data, ERS
INTRODUCTION AND FINDINGS
CASE STUDY SELECTION
RESEARCH ACTIVITIES
» EVALUATION CONCEPTS
CONCLUSIONS
Biophysical models are important tools for identifying counterfactuals

- Biophysical models provide a baseline for evaluating new technologies and policies
 - Only one set of facts is observed, but many factors change simultaneously
- Important for “opportunity cost”:
 - What was the best alternative?
- How to evaluate an evaluation tool?
Environmental “targeting”: allocating program dollars for greater efficiency

- An application of models to achieve
 - Greater benefit per program dollar
 - Lower costs to achieve a desired performance
- Identifies physical impacts with greater economic significance (pos. or neg.)
 - Practices with cost-effective implementation
 - Sources that are particularly damaging
 - CRP, EQIP incorporate this approach to a limited extent
- At a minimum, research benefit is the difference “targeted” vs. untargeted policy
Inferring program benefits from policy context has attribution problems

- Incomplete attribution of benefits
 - Multidisciplinary, multisector problem
 - Basic vs applied, long lags

- Superattribution of benefits
 - Sum of marginal contributions can exceed total benefit
 - Occurs when multiple actors are indispensable:
 - ARS technology
 - CRP policy
 - Remote sensing data
 - Producer consent

How to value the marginal contributions?
Conservation Effects Assessment Project (CEAP)

- Simultaneous with 2002 Farm Bill expansion of conservation programs
- Representative spatial sample of croplands in grain, integrated analysis of farming practices
 - Rangeland, wetland components
- Watershed studies
- Literature review
 - Includes numerous smaller studies
Greater precision in benefits estimation narrows the scope of evaluation

- Spatial focus for more complete accounting
 - Market, non-market values vary spatially
 - GIS is a complementary tool
- Methodology for hard-to-measure effects has greater costs, data needs
 - Stated preference
 - Contingent valuation
 - Revealed preference
 - Travel cost, hedonic analysis
 - Economic experiments
- Do results generalize sufficiently for programmatic analysis?
Internal program evaluation is an area for application of economic analysis

- Research planning and management continue, whether external economic information is available or not
 - Reliance on peer review, achievement of milestones, other program planning tools
- Economic analysis can lend insight; examples from ARS programs:
 - Leveraging existing assets (human capital, experimental sites, etc.)
 - Reallocating marginal funds
 - “Sunk costs”
Conclusions

- Long lags, lack of market prices, and attribution errors create information deficiencies for program evaluation.
- ARS plays a coordinating role for development of technologies that improve water quality and methodologies for measuring impact.
 - Within USDA
 - Across Federal government
Conclusions

- In addition to research results and usable technologies, ARS provides analytical tools for program evaluation:
 - Different levels of spatial scale, integration
- Program evaluation balances appropriate use of these tools and opportunities for finer-grained studies