
Choosing Efficient Treatment Options for Invasive Plants by Assessing Costs and Benefits in a Spatial Risk-Based Optimization Framework

Lisa A. Wainger and Dennis M. King
University of Maryland
Center for Environmental Science

2001-03 Idaho Fires
Treated under
Emergency
Stabilization &
Rehabilitation and
Burned Area
Rehabilitation
Programs

Source Data: USFS, BLM

Native-Dominated Site

Cheatgrass- & Medusahead-Dominated Site

Project Goals

- A decision-support tool to help allocate restoration effort to maximize social benefits
- Address the question: Where should restoration efforts be concentrated?

Research Approach

- Characterize management problems and response options
- Identify ecosystem services affected and frame benefits analysis
- 3. Evaluate data available to inform assessment of benefits, costs & risks
- 4. Develop risk-adjusted cost-effectiveness framework for decision support
- Test integrated simulation optimization for comparing options and assessing uncertainty

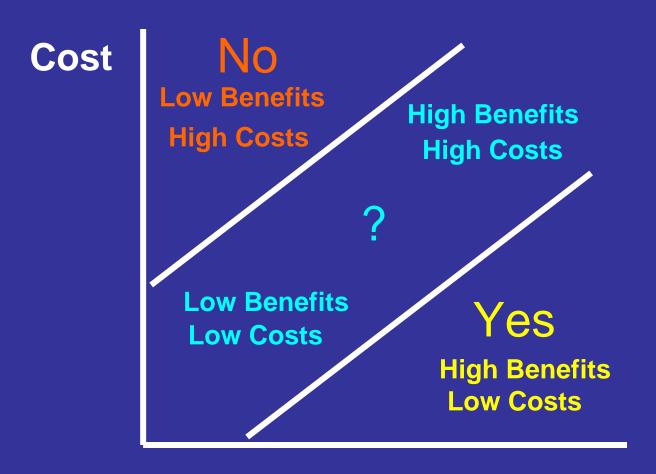
Framing Benefit Assessment

- Which areas can / do provide benefits in terms of ecosystem services?
- What damages / costs are avoided by restoring now at various locations?
- How confident are we that restoring will generate future streams of benefits?
- How urgent is treatment at this site?

Benefits: Costs Avoided with Cheatgrass Management

Ecosystem Service	Costs
b ₁ = Recreational Antelope Hunting	Increased costs, reduced bag rates, reduced quality of experience.
b ₂ = Production of animal forage for commercial ranching	With fire - lost profits – if no substitute land, reduces productivity and/or increases costs. BLM policy to shift ranchers off burned areas for 2-3 yrs. Without fire - Increased variability of returns (?)
b ₃ = Property protection	Increased risk of property damage due to fire with cheatgrass
b ₄ = Existence values	Sage / sage grouse are characteristic species at risk. Loss of sage appears irreversible without human intervention.

Treatment options to prevent cheatgrass domination


Intensity

- No treatment
- Aerial seeding only (mix of native/non-native)
- Aerial seeding + chaining
- Aerial seeding + chaining + herbicide
- Aerial seeding + chaining + drill-seeding
- Intensive sheep grazing

Evaluate Risk-Adjusted Cost-Effectiveness

- 1. Benefits of Successful Restoration
- 2. Probability of Successful Restoration
- 3. Costs of Treatment

Comparing Restoration Options

Benefits

Burned Area Restoration Optimization Model

Objective

Maximize benefits of multiple ecosystem services subject to a given budget constraint

$$B_t = \sum_j \sum_j W_j$$
 ($b_{ij}^{with} - b_{ij}^{without}$)
 $i = \text{Location } i$, (sum over subset of fires)
 $j = \text{Benefit } j$ (brec, bforage bprop, bexist)
 $t = 2-3$ years following restoration

Control **Variables**

k = treatment, the level of preventative/restorative treatment provided to burned area i w = weights assigned to benefits j

Budget
$$TC_i = \sum_k FC + JC_k *JT_i + TCA_{ik} *A$$

Constraint FC = Fixed Costs
 JC_k = Journey (Travel) Cost, personnel and equipment
 JT_i = Journey Time (hours)
 TCA_{ik} = Treatment Cost per Acre
 A_i = area treated (acres)
 k = treatment(s)

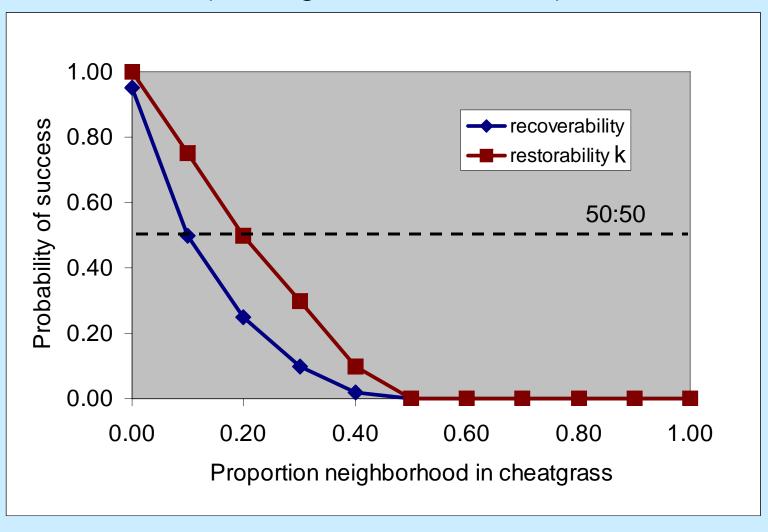
Estimating Change in Benefits with Treatment

$$b_{ij} = f(b_{max_{ij}}, S_i, C_i)$$

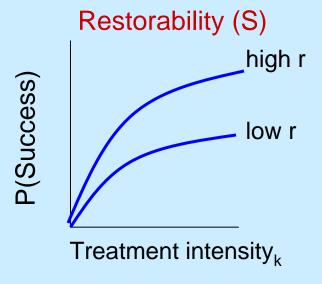
 $b_{max_{ii}}$ = maximum possible site benefits

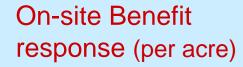
 S_i = probability of success (desirable plants dominant in year 2-3)

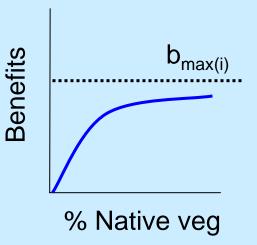
 C_i = contiguity / connectedness of native vegetation proxy for fire risk to neighboring lands

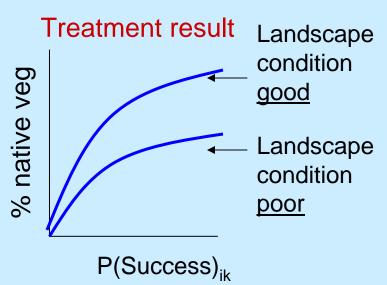

Assessing Site Restorability

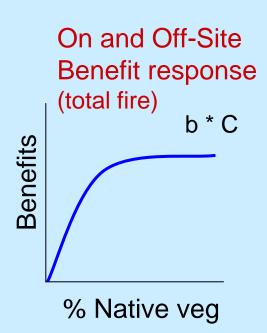
Restorability:

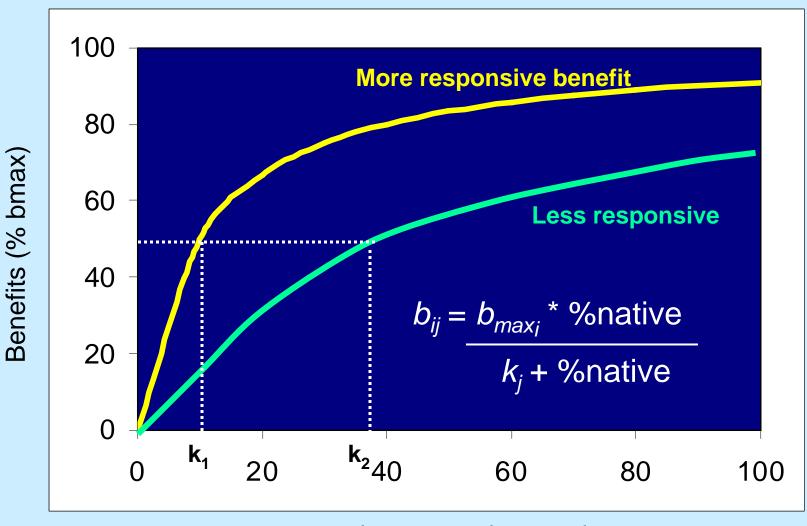

$$S_i = P(r_i, \tau_k)$$
 $r_i = \text{site recoverability}$
 $\tau_k = \text{treatment effectiveness}$
 $k = \text{treatment}$

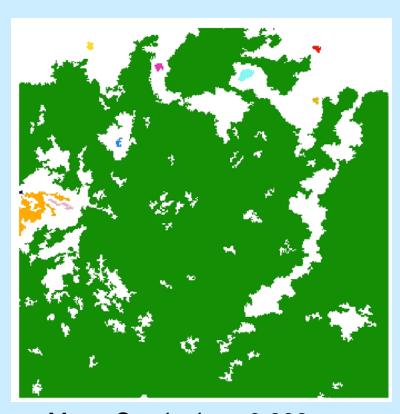

Recoverability and restorability based on % neighborhood in cheatgrass


(holding all else constant)

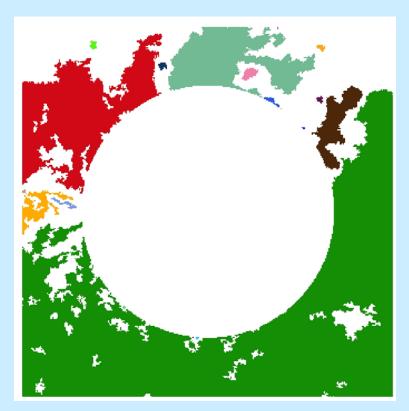



Calculating Risk-Adjusted Site Benefits



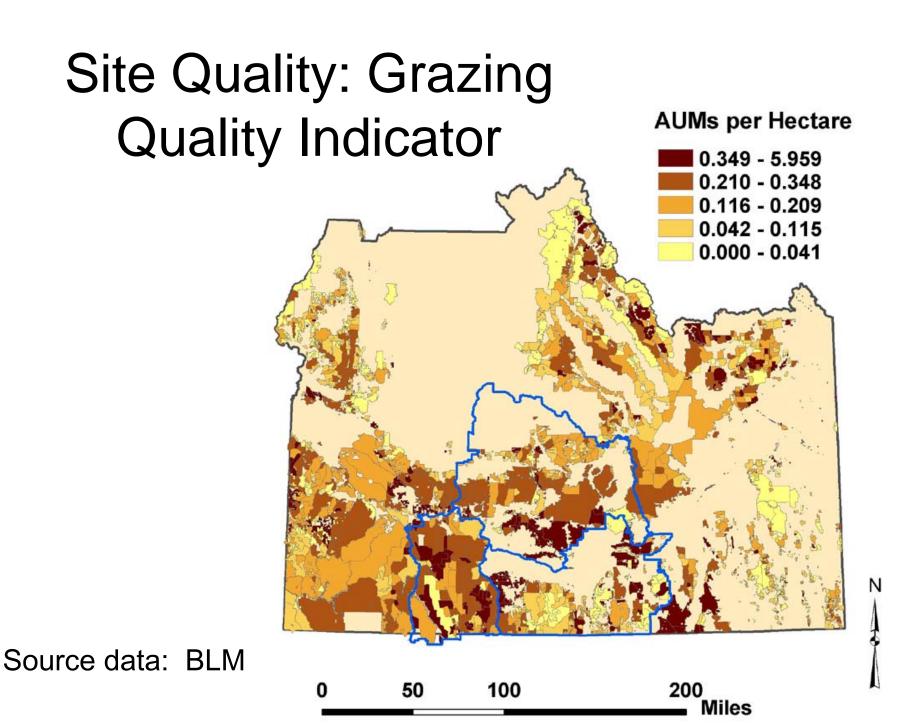


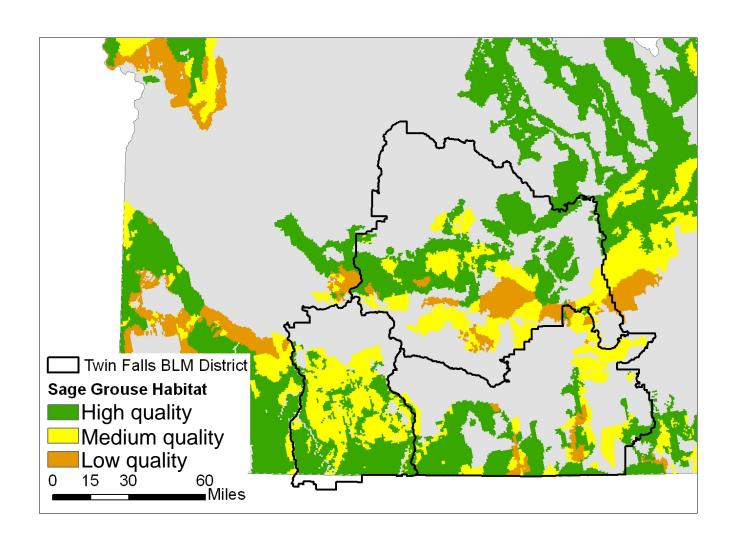
Benefits vs. % native vegetation



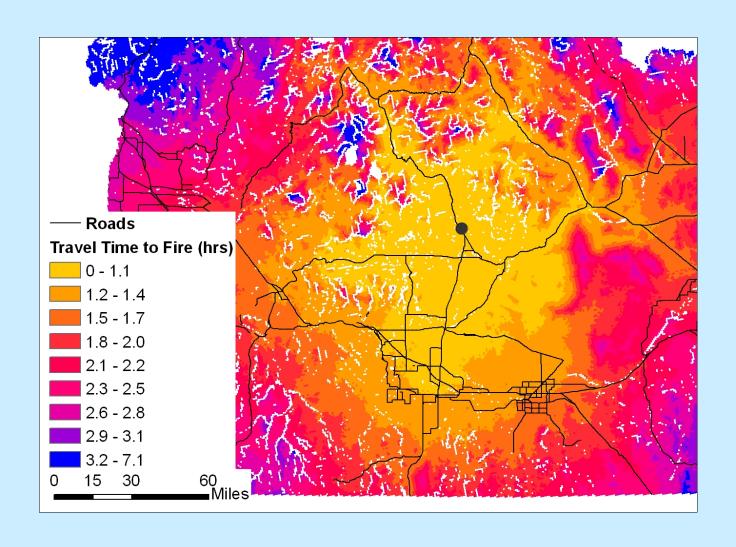
% native vegetation on site

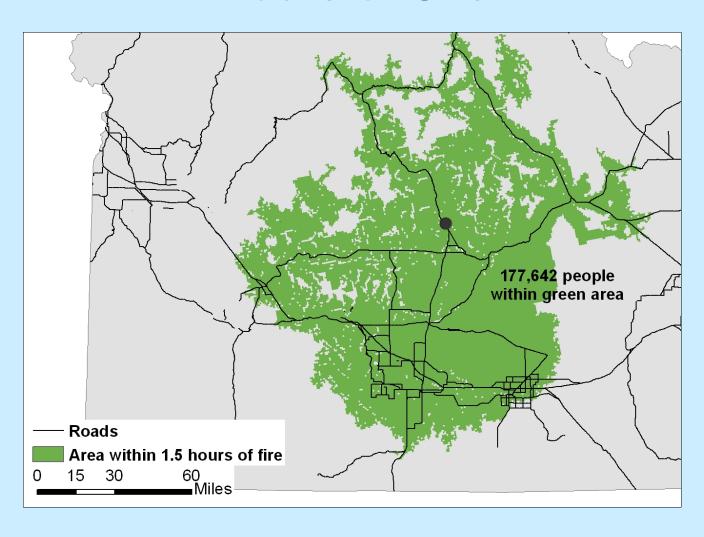
Effect of Fire on Landscape Connectivity


Mean Contiguity = 0.666 Largest Patch Index = 75.2


Mean Contiguity = 0.576 Largest Patch Index = 31.7

Measuring b_{max}


- Site quality
- Landscape quality
- Scarcity / replaceability / substitutability
- Risk of service disruption


Site Quality: Sage Grouse Habitat

Accessibility: Travel Time to Site

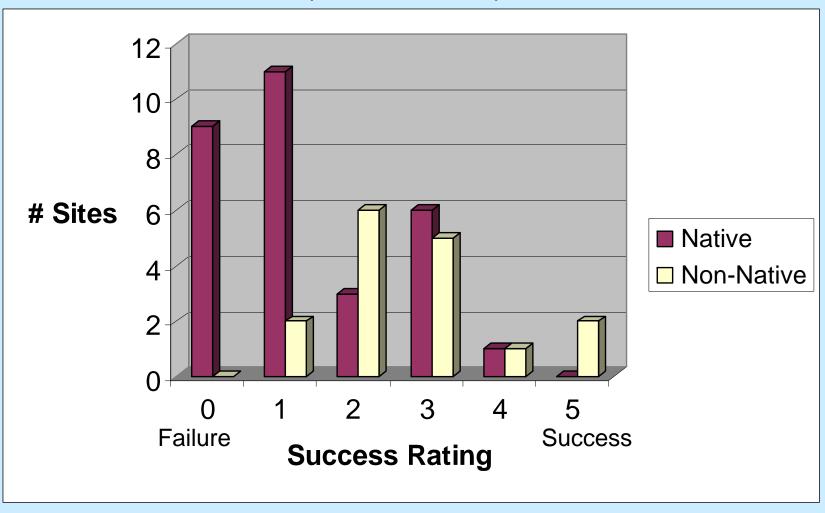
Accessibility: Population within 1.5 Hours of Site

Results

Restorability Regression Analysis Results (ordinal logit)

Reduced Success (negative coefficients)

- % Infested
- Herbicide use
- Drill seeding

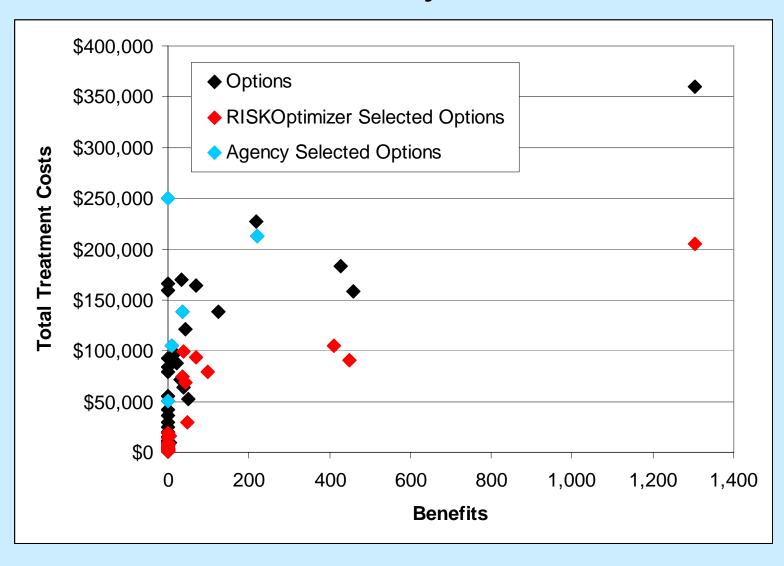

Enhanced Success (positive coefficients)

- Elevation*
- Herbicide x %Infested*
- Drill seeding x %Infested
- Native seeds*
- Fencing
- Spending per acre
- Fire size

^{*} Coefficients significant at > 95%

Seed Choice and Project Success

(2001-2003)



Treatment Cost Empirical Modeling

Dependent variable = Treatment cost per acre

	Unstandardized Coefficients		Standardized Coefficients		
Model	В	Std. Error	Beta	t	Sig.
1 (Constant)	6.763	.524		12.898	.000
In (fire size)*	304	.071	441	-4.275	.000
drill seed dummy	.646	.200	.344	3.238	.003
herbicide dummy	.386	.216	.218	1.792	.082
state dummy (ID)*	-1.368	.322	756	-4.246	.000
native dummy*	.675	.248	.359	2.725	.010
WUI dummy	192	.446	045	431	.669
slope class	042	.327	013	128	.899
protected area	305	.273	117	-1.117	.272
fencing dummy	292	.245	141	-1.189	.243
Ln (airport travel time)	297	.205	186	-1.448	.157

Costs vs. Risk-Adjusted Benefits

Optimization Output vs. Management Decisions

equal weights to benefits

	Total Acres Treated	Total Change in Benefit Units	Total Cost
RISKOptimizer Treated Sites	48,140	626,439	\$999,500
Agency Treated Sites	25,850	67,149	\$1,254,000

Lessons Learned

Assessing Restorability

Need data on untreated sites to distinguish recovery rate from restoration rate

Assessing Benefits

- Managers want to incorporate all benefits not just monetized benefits
- Benefit indicator calculations are time-consuming but can be automated
- Further research needed to ensure benefit measures adjust to changing scarcity
- Static analysis can incorporate concepts of benefit persistence
- Data not available to quantitatively assess reduction in fire risk
- Dynamic model required to directly assess value of increasing fire-free interval

Why we decided to try RISKOptimizer Software

Deals explicitly with uncertainty regarding inputs/processes/outcomes

Combines simulation & optimization

 Moderate-cost (\$500) software tool that can be implemented as an Excel add-in

RISKOptimizer Software Overview

 Combines Monte Carlo simulation with genetic algorithm-based optimization in models that contain uncertain factors

 Can find optimal solutions to problems that are "unsolvable" using standard linear and non-linear optimizers

Impact of Uncertainty on Simulation/Optimization

Example 1: Certain Input Variables

B = change in EBI with Treatment <math>B = 500

C = cost of treatment C = \$100

Results

B/C = 5

Example 2: Uncertain Input Variables – only 2 possible values per input

B= 300 or 500 C = \$50 or \$150

Results

B/C = 6 300/\$50 B/C = 10 500/\$50

B/C = 2 300/\$150 B/C = 3 500/\$150

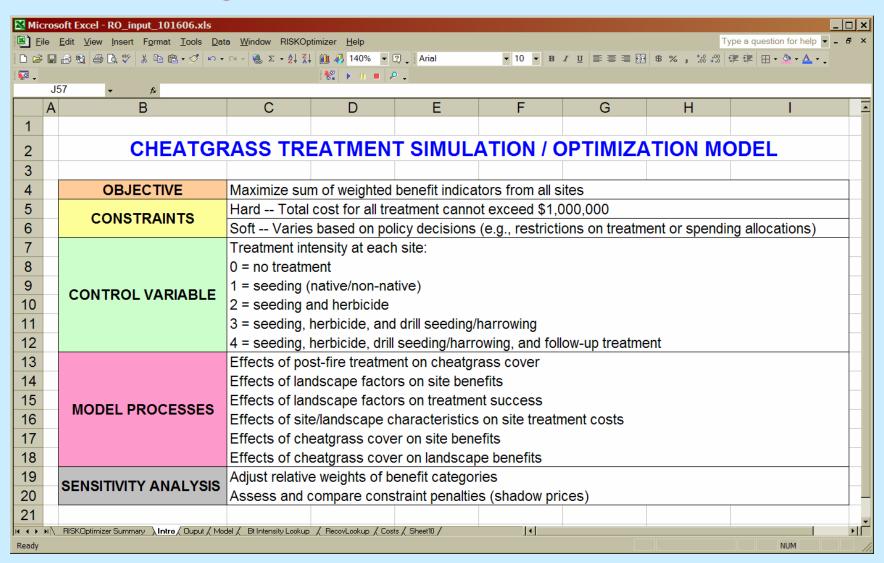
Example 3: Uncertain Input Variables – site-specific probability of values

E.g.,
$$B = (500, 200-600)$$
 $C = \$(100, (10))$

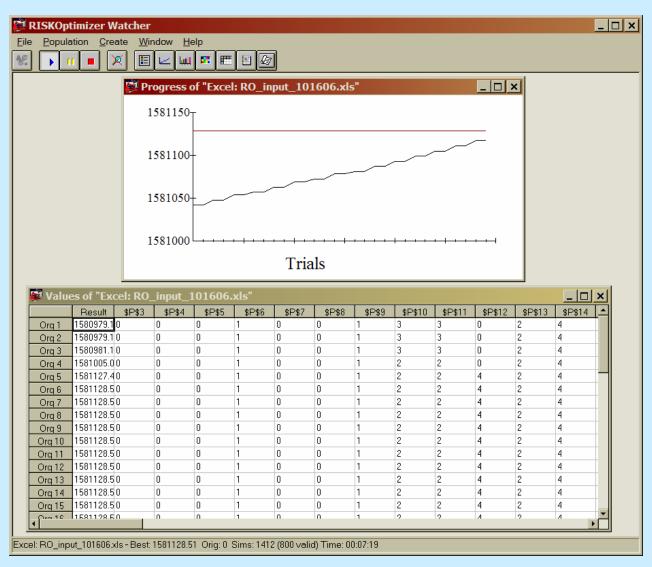
Results

B/C = f(B,C) which will differ for each site

RISKOptimizer Software Overview


Allows the user to describe the range and probability distributions for each uncertain factor, and then

- 1. Runs full simulations for each possible trial by selecting factor values based on probabilities
- 2. Stops simulating and selecting factor values after a selected time period or number of iterations
- 3. Picks the solution that best fits the distribution of the target cell being maximized or minimized


General Approach

Step 1	Enter all factors (inputs, outputs, weights, constraints, etc.),
Step 2	Define all processes (relationships among factors)
Step 3	Identify which factors are uncertain and their expected range and probability distributions.
Step 4	Identify the target cell to be maximized
	Weighted sum of our four benefit indicators.
Step 5	Identify adjustable cells (control variables):
	 Weights on each benefit indicator (defined by the user)
	 Treatment intensity at each area (solved by the program)
Step 6	Identify constraints
	"Hard" – budget
	 "Soft" – policy choices that limit the optimization
Step 7	Assign a weight to each benefit (user preferences)
Step 8	Run the program and assess results
Step 9	Perform sensitivity tests on assumptions, weights, etc.
Step 10	Interpret results and develop recommendations

Cheatgrass Optimization Model

RISKOptimizer Progress Watcher

Sample RISKOptimizer Output

	soft Excel - RO_input_101606.xls					⊐ ×
	Edit View Insert Format Tools Data Window RISKOpti				tion for help - 6	
				▼ 10 ▼ B I U F = ■ B \$ % , % +% €		* * •
I I I I	G53 ▼ ∱	 	•			
A		С	D	E	F	<u>_</u>
1	PROGRAM INPUT			_		
2						
3	BENEFIT WEIGHTS					
4	Benefit Category	Weight				
5	Recreational/Hunting	0.25				
6	Grazing	0.25				
7	Property Protection	0.25				
8	Habitat/Existence Value	0.25				
9						
10						
11	PROGR	RAM OUTF	PUT Optir	mal Solution		
12						
13	OPTIMAL BENEFIT SOLUTION	١		PROGRAM SOLUTION		
		Change in Benefit				
14	Benefit Category	Units		Treatment Type	# Fires	
15	Change in Recreational/Hunting Benefits	108,608		No Treatment	26	
16	Change in Grazing Benefits	168,172		Aerial seeding only	17	
17	Change in Property Protection Benefits	2,670		Aerial seeding + chaining	11	
18	Change in Habitat/Existence Value Benefits	346,989		Aerial seeding + chaining + herbicide	5	
19	Total change in benefits	626,439		Aerial seeding + chaining + drill-seeding	9	
20						
21	TOTAL COST	\$999,544		Average fire size per treatment type	Acres	
22				No Treatment	2,601.6	
23				Aerial seeding only	2,628.3	
24				Aerial seeding + chaining	184.9	
25				Aerial seeding + chaining + herbicide	262.2	
26				Aerial seeding + chaining + drill-seeding	12.7	
(((()))	RISKOptimizer Summary / Intro Duput / Model / Bt Intensity Lookup	/ RecovLookup / Costs	S/ Sheet10 /	[4]		١Ľ
Ready					NUM	

Conclusions

- 1. Details are important to managers, so site-specific analysis for comparing benefits, costs, risks are most useful
- Benefit response functions are not well understood; but screening-level economic analysis based on first principles of ecology and economics can work
- 3. Data are sufficient to perform screening level analysis, but results are sensitive to the functional form of benefits
- Weights on benefits are only critical when benefits compete; when they do, weights can significantly change the optimal allocation of treatment effort and treatment intensities
- A simple decision framework that is based on costs and various types of benefits, incorporates uncertainty, and provides a means for testing hypotheses regarding competing and complementary benefits is most useful.
- 6. Decision-support tools that follow sound economic principles and reveal underlying assumptions and value judgments provide a better basis for both expert and stakeholder involvement in decision-making and promote cost- and risk-conscious solutions