Optimal Strategies for Detecting Invasive Pests in a Forest Landscape

Frances Homans¹
Robert Haight²
Tetsuya Horie¹
Terry Hurley¹
Shefali Mehta¹
Steve Polasky¹
Robert Venette^{2, 3}
Abby Walter³

- 1. University of Minnesota, Department of Applied Economics 2. USDA-Forest Service
 - 3. University of Minnesota, Department of Entomology

Management of Invasive Pests

- Exclusion
- Detection
- Management
 - Eradication
 - Suppression
- Restoration

Two Research Contexts

- Pest has established, and is spreading within an area
 - How much effort should be devoted to detection if detection triggers an immediate local eradication?
- Pest is not yet established, but advance of the invasion front is inevitable
 - How much effort should be devoted to detection if detection triggers the management of subpopulations ahead of the front?

Oak Wilt

- Attacks red and white oaks in eastern USA
- Caused by fungus
 Ceratocystis fagacearum
- Leads to rapid wilting
- Is often fatal to red oaks
- Spreads quickly

Oak Wilt

- Common in eastern hardwood forests
- Kills 1000s of trees in Minnesota alone

Disease Cycle

- Oak wilt has both an overland and an underground cycle
- Pockets form via beetles
- Pockets expand via root grafts

Oak Wilt Treatment

- Remove infected trees and healthy trees within 500 m
- Plow perimeter to break root grafts

Sampling Strategies for Established Pests

- Haight, Mehta, Homans, and Venette 2007
 - You own a forest that is free of infection
 - You have estimates of pest arrival and growth
 - You sample "sentinel trees" each year to find out if they are infected.
 - If pest infects a non-sentinel tree, it establishes a pocket and grows exponentially.
 - If pest infects a sentinel tree
 - pest is immediately detected
 - undetected infestations are removed
 - How many sentinel trees should you sample?

Optimal Sampling Model

- Renewal-Reward Model
- Minimize Annualized Cost comprising:
 - Cost of search before detection as a function of sample proportion.
 - Cost of search to find all infected trees once an infection is detected.
 - Cost of eradicating all infected trees

Model components

- Unit of analysis
 - 10 hectare wood lot
- Choice variable
 - search proportion, s
- Parameters
 - Arrival rate per woodlot, r.
 - Growth rate, g.
 - Discount rate, δ .
 - Cost of searching entire woodlot, c₁.
 - Cost of removal per tree, c₂.

Data for Minnesota Oak Stands

- Forest Inventory and Analysis (FIA) Database
 - Forested hectares per county
 - Number of red oaks per county
- Converted into: density of red oaks per hectare

Published Literature

- Arrival Rate per hectare (r)
 - 100 red oaks/hectare: Menges
 - Converted to a density-dependent arrival rate
- Growth Rate (g)
 - Radial growth rate via root grafts: 3.47 meters/year: Shelstad et al., 1991
 - 40 year mortality results: Menges, 1984.
 - Converted to a density-dependent mortality rate

Results reflect number of red oaks per 10 hectare woodlot

Alternative Model

- Minimize sum of second stage search cost and eradication cost, subject to a constraint on first stage search cost
- May apply if government agencies search, landowners eradicate
- Results:
 - Low search levels impose high costs on landowners.
 - Without some minimum level of search, landowners are likely to assume responsibility for first stage search.

How do constraints on search affect landowners' costs?

						Sum of					
	Stage 1 Cost				Eradication		Landowner				
	Constraint		Stage 2 Costs			Costs		Costs		Total Costs	
Minimum search	\$	6,250,000	\$	1,062,096	\$	27,549,854	\$	28,611,950	\$	34,861,950	
	\$	6,500,000	\$	1,125,819	\$	15,126,435	\$	16,252,254	\$	22,752,254	
	\$	6,600,000	\$	1,118,982	\$	14,093,225	\$	15,212,208	\$	21,812,208	
	\$	6,650,000	\$	1,136,104	\$	11,624,339	\$	12,760,443	\$	19,410,443	
	\$	6,700,000	\$	1,140,807	\$	11,165,357	\$	12,306,164	\$	19,006,164	
	\$	6,800,000	\$	1,158,645	\$	9,716,063	\$	10,874,707	\$	17,674,707	
	\$	6,900,000	\$	1,175,921	\$	8,698,859	\$	9,874,780	\$	16,774,780	
	\$	7,000,000	\$	1,192,999	\$	7,928,378	\$	9,121,377	\$	16,121,377	
	\$	7,500,000	\$	1,272,900	\$	5,941,736	\$	7,214,636	\$	14,714,636	
Unconstrained											
optimum	\$	7,812,283	\$	1,322,214	\$	5,697,650	\$	7,019,864	\$	14,832,146	

Second Research Context

- Invader is not yet established in an area, but invasion is inevitable
 - Natural spread of front is unstoppable
 - Sub-populations erupt ahead of the front due to human-assisted dispersal. These populations are manageable.
 - How much effort should be devoted to detecting sub-populations ahead of the main front?
- Example: gypsy moth ahead of the front

Current Range

European Gypsy Moth (Lymantria dispar) Quarantine

United States Department of Agriculture - Animal and Plant Health Inspection Service

http://www.aphis.usda.gov/ppq/maps/gypmoth.pdf

Slow the Spread of the Gypsy Moth Project http://www.gmsts.org/operations/maps/

Human-assisted dispersal

Pennsylvania Department of Conservation and Natural Resources - Forestry Archives, Pennsylvania

Department of Conservation and Natural Resources, Bugwood.org

Literature: spatial distribution of trap density

- Sharov, Liebhold, Roberts, Journal of Economic Entomology, 1998
 - Optimal density of traps beyond the population front
 - Probability of eradication of small populations is equal to the probability of detection, which depends on the density of traps
 - Result higher intensity of traps near the front is optimal
 - Focus on slowing the spread due to natural dispersal: range of possible locations of sub-populations is limited.

Optimal control of subpopulation

- Sub-populations emerge beyond front—manage the population once you detect it. Detection at τ.
 - Derive optimal value function from:

• min
$$\int_{\tau}^{T} e^{-r(t-\tau)} \left(px(t) + cR(t)^{2} \right) dt$$

Subject to:

$$\dot{x} = ax - R, x(\tau) = x_{\tau}, T \le T_{\text{max}}, x(T) \ge 0$$

Get:

$$V(x_{\tau}, (T-\tau)) = \int_{\tau}^{T} e^{-r(t-\tau)} \left(px^{*}(t) + cR^{*}(t)^{2} \right) dt$$

Model of detection

- Value function V(x(τ),T-τ)
 - Cost is increasing in both arguments
- Search determines the date that the population is detected
 - Detection rate: (prob (t=τ)=kse^(-ksτ))
 - Expected date of detection, $E(\tau)=1/(k s)$
 - k: detectability, s: search

Objective Function

- Total Cost with Search (TCS)
 - Search cost = $bs^2(1-e^{-r\tau(s)})$
 - Damage before detection = $p^*x_0(e^{(a-r)\tau(s)}-1)$
 - Optimized cost after detection
 = e^{-rτ}V(x(τ(s)),T-τ(s))
- Search enters through date of detection, τ.
- Minimize total costs with respect to s.

Solution Procedure

- Given T_{max}
- Given search level, and corresponding τ:
 - Find optimal removal path and value function.
 - For example:

Solution Procedure, continued

 Find optimal removal paths and value functions for each search level greater than 1/(kT_{max}). This constraint ensures that the date of detection is before the front arrives (τ<T_{max}).

Solution Procedure, continued

- For each search level, calculate the sum of search costs, damage costs before detection, and optimized costs after detection.
- Find the search level that minimizes these costs.
- Repeat for different levels of T_{max} to see how optimal search varies over space.

Parameter	Value					
Growth rate, a	0.04					
Cost of detection, b	5					
Cost of treatment, c	1000					
Discount rate, δ	0.1					
Damages, p	2000					
Starting stock level, x ₀	100					
Detectability, k	100					

Example when ending date=10 Cost, \$ Total Costs (Tmax=10) Management Cost (Tmax=10) S*(Tmax=10)=106Damage before Detection (Tmax=10) Search costs Search (S)

Conclusions

- Optimal management depends on where you are relative to the front
- Optimal search strategy depends on optimal management upon detection
- Future work
 - Incorporate optimal determination of the rate of natural spread
 - Incorporate alternative starting stock levels at different distances from the front

Summary Remarks

- First model
 - Continuous random arrival of the pest, exponential growth
 - Monitoring of "sentinel trees"
 - Detection triggers local eradication
 - Results for a heterogeneous landscape
 - Overall cost minimization strategy
 - Budget constrained optimization across landscape

Summary Remarks

- Second Model
 - Sub-populations are established and grow ahead of the front
 - Management commences once detection occurs
 - Higher detection effort leads to earlier detection, implying a smaller population upon detection
 - Optimal detection and optimal management strategy depends on distance from the front because the ending date, T, depends on how long it takes the front to arrive.