

L. Joe Moffitt

Department of Resource Economics

University of Massachusetts Amherst

PREISM Workshop
USDA/ERS
Washington, DC
October 24, 2008

Co-Investigators

John K. Stranlund, Barry C. Field, and Craig D. Osteen

Co-Sponsors

USDA/ERS/PREISM Cooperative Agreement No. 43-3AEM-4-80115

Massachusetts Agricultural Experiment Station Project No. MAS00861

Reports

L. J. Moffitt, J. K. Stranlund, and C. D. Osteen. "Robust Detection Protocols for Uncertain Introductions of Invasive Species." *Journal of Environmental Management* Vol. 89 (2008): 293-299.

L. J. Moffitt, J. K. Stranlund, B. C. Field, and C. D. Osteen. "Robust Inspection for Invasive Species with a Limited Budget." in Lansink, Alfons G. J. M. Oude, (Ed.), New Approaches to the Economics of Plant Health, Amsterdam: Springer, 2007, 7-22.

L. J. Moffitt, J. K. Stranlund, and B. C. Field. "Inspections to Avert Terrorism: Robustness Under Severe Uncertainty." *Journal of Homeland Security and Emergency Management* Vol. 2 (2005): No. 3, Article 3. http://www.bepress.com/jhsem/vol2/iss3/3

Facts

→ Invasive species can accompany perishable commodities that enter the United States.

Facts

Invasive species can accompany perishable commodities that enter the United States.

→ Both inspection for and entry of invasives can be costly.

Question

Can inspection protocols be improved through application of economic decision criteria and, if so, how?

→

8 of 30

Overview

- I. Background
- II. Approach
- III. Results

I. Background

→ USDA/DHS MOU

USDA/DHS MOU

→ AQI

AQI:

→ Allows for size, contents, and origin

AQI:

Allows for size, contents, and origin

→ Generally features a 2% inspection rate

I. Background (cont)

AQI:

→ Constant inspection rate is not uncommon

Constant inspection rate is not uncommon

→ No apparent basis in economic considerations

II. Approach

→ Base inspection on cost

Base inspection on cost

→ Recognize that presence of invasives is uncertain

Base inspection on cost

Recognize that presence of invasives is uncertain

→ Seek robustness to uncertain presence of invasives

Cost involves two components:

loss due to entry

Cost involves two components:

loss due to entry

+

inspection cost

Expected loss due to entry:

Pr(inspection failure) × E(loss)

II. Approach (cont)

Probability of inspection failure (1000 boxes):

Decreasing expected loss, increasing inspection cost:

Expected cost:

Expected cost given number of infested boxes

Basis for inspection with an uncertain number of infested boxes:

→ Robustness in meeting an expected cost requirement

Robustness: maximize robustness to expected cost requirement

1. Robust inspection

2. Robust inspection and expected cost requirement

3. Robustness

