Implications of Simultaneity in Pest Damage Functions

Presented by Kelly Cobourn and Jeffrey Williams
University of California, Davis

Co-authors: Rachael Goodhue, Frank Zalom, Hannah Burrack

Project: "Encouraging Cooperation Between Commercial Producers and Residential Users of an Invasive Species Host: Designing Collective Pest Management Institutions for the Olive Fruit Fly in California"

Introduction

- To evaluate economic impact of a pest, need to link biological and economic systems via a damage function
- Dominant approach ("population-based model")
 - % yield loss at harvest = f(pest population)

Pitfalls

- Underlying factors, e.g. temperature, affect crop susceptibility and pest populations/activity (endogeneity)
- Assumes linearity
- Trapping numbers proxy for pest populations

Motivation

- Theoretical analysis by Christiaans, Eichner, and Pethig (2007)
 - Population-based approach does not describe mechanics of damage process
 - Structural damage specification: constrained optimization behavior by pest and host
 - Pest management results: target inputs that reduce crop susceptibility, pest populations, or both
- Heat makes fat fruit, fat fruit makes plentiful flies, more flies damage more fruit
- Objective: Formulate and estimate a structural damage function that addresses simultaneity

Application

- California olive fruit fly
 - Invasive detected in 1998, spread through all CA olive-growing regions by 2004
- Extensive infestation dataset (Burrack and Zalom)
 - 81,267 olives dissected; over space, time, cultivar
- Different infestation rates by cultivar
 - Min. volume threshold for damage
 - Heat drives changes in fruit size and in fly activity, both influence infestation rates

Research Questions

- How do we define damage?
- What environmental and management factors influence olive fruit fly damage rates?
 - Which affect fruit susceptibility? Fly populations? Both?
- How do structural and population-based approaches perform in terms of predictions over space, growing season, and cultivar?

Structural Damage Function

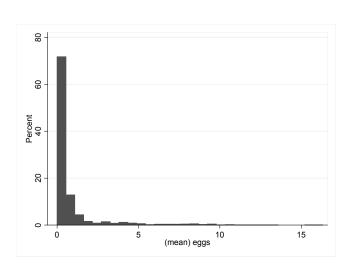
$$DG_{it} = f_D(\mathbf{HC}_{it}, \mathbf{WT}_{it}, \mathbf{MG}_{it}, \mathbf{X}_{it}) + \varepsilon_{it}$$

$$HC_{Kit} = f_V(\mathbf{WT}_{it}^V, \mathbf{MG}_{it}^V, \mathbf{X}_{it}^V, \mathbf{Z}_{it}) + v_{it}$$

$$i = 1, ..., N, t = 1, ..., T$$

- Host characteristics (*HC*) affect fly preference
 - Volume, shape, color, oil/water content, etc.
- Factors that affect fly reproductive activity and development
 - Temperature (*WT*)
 - Management practices (*MG*): irrigation, own-orchard management practices, practices used on nearby trees outside test plot
- Factors that affect olive volume (HC_K)
 - Temperature (WT^V), MG, humidity and precipitation (Z)
- H_0 : $Cov(\varepsilon, v) = 0$; H_A : $Cov(\varepsilon, v) \neq 0$

Data



- Primary: field infestation dataset for 2005
 - Infestation (oviposition stings, eggs, larvae, pupae)
 - We use multiple measures of infestation
 - Fruit measurements
 - Orchard management practices
 - Trapping numbers
- Secondary: weather
 - Daily min/max temps, humidity, precipitation
 - Olive growing degree days, fly larva degree days, days outside adult activity thresholds

Empirical Issues & Methods

- Damage definition: continuous vs. binary
- Triangular system
 - Heckman's sample selection bias correction (1979)
 - Identification (Z)
- Panel dataset
 - Fixed effects
- Probability mass at zero
 - Tobit estimation method

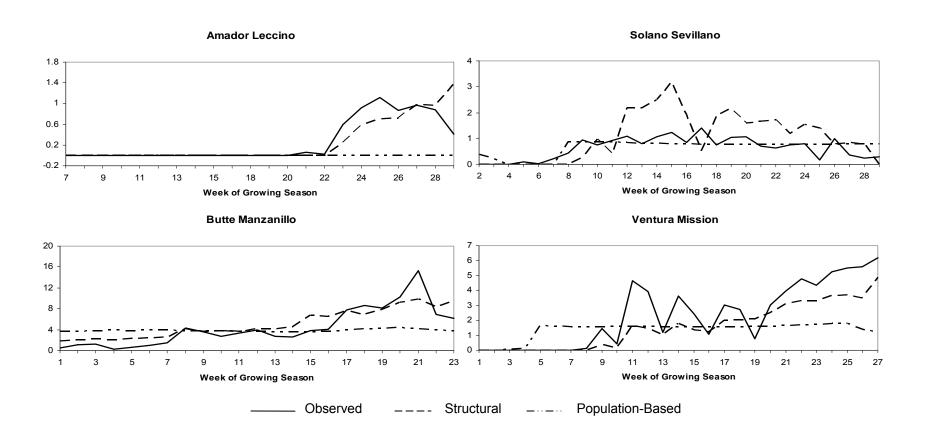
Models Estimated

Туре	DG Description	Independent Variables
Structural	Mean # eggs/olive	 HC = (volume, volume*late, shape) WT = (temp, temp sq., min. temp var.) MG = (irrigation, grd. cover, maint.) Z = (humidity, precip.) Site, cultivar indicators
	Mean # larvae/olive	
Population- Based	Mean # eggs/olive	Contemporaneous trapping
		Lagged trapping (≤ 4 weeks)
	Mean # larvae/olive	Contemporaneous trapping
		Lagged trapping (≤ 4 weeks)

Empirical Results

Structural Models

- Eggs
 - Olive volume late in the season (-)
 - Days outside adult activity thresholds (-)
 - Irrigation*heat (+)
- Larvae
 - Olive volume late in the season (-)
 - Accumulated larval degree-days (-)
- Endogeneity
 - Reject H₀ for eggs, not larvae
 - Results differ by olive type: reject H₀ for table olives, not for oil

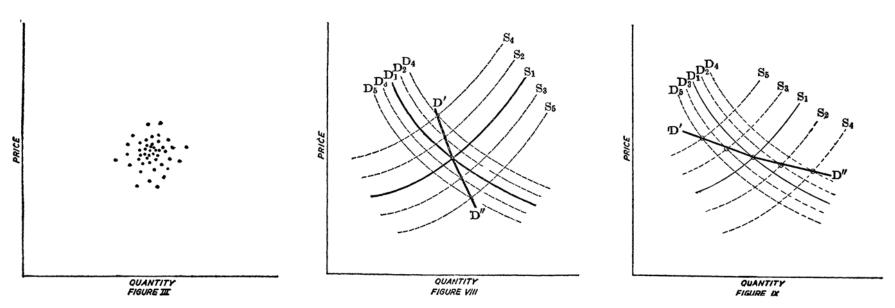

Population-Based Models

Contemporaneous trapping (+), 2-4 week lags (+)

Out-of-Sample Prediction

 SF predicts variable infestation rates over the growing season; PB relatively constant

Conclusions: Olive Fruit Fly Analysis



- Weather and management practices drive host susceptibility and pest activity
- Differences in results across cultivars suggest a deeper structural model
- Structural model reflects intra-seasonal heterogeneity in infestation rates
 - Source of heterogeneity in management incentives
 - Coupled with pest mobility creates treatment externalities

Simultaneity

- History in agricultural economics (Working 1927; Haavelmo 1943)
- Complicates estimation of causal relationships w/ non-experimental data
- Implications of endogeneity in biological systems for bioeconomic modeling

Source: E.J. Working. 1927. QJE 41(2): 212-235

Identification

- Key to correcting for simultaneity is a plausible identifying restriction
- Our identifying assumption:
 - Moisture (humidity, precip) inhibits olive growth, but does not affect fly activity
 - Based on scientific studies of olive and olive fly phenology
- Exceptional dataset permits estimation of structural damage function

