Analyzing the Bio-fuels Market

Richard Stillman

Farm Foundation and ERS Workshop
Global Bio-fuel Developments: Modeling the Effects on Agriculture
Wednesday, February 28

ERS Bio-fuels Baseline Activity and Modeling Efforts

- Bio-fuels and the baseline activity
 - Assumptions about growth in the demand for bio-fuels
 - Bio-fuel production and demand assumed to be exogenous
- FAPSim
 - Domestic Bio-fuel analysis
- PEATsim
 - International Bio-Fuel analysis
 - Develop a Bio-fuel component

Bio-fuels and the Baseline

- Domestic baseline activity
 - Paul Westcott's presentation described the assumptions about bio-fuels in the domestic baseline
- International baseline activity
 - We developed assumptions about bio-fuel activity in other countries.

International Baseline

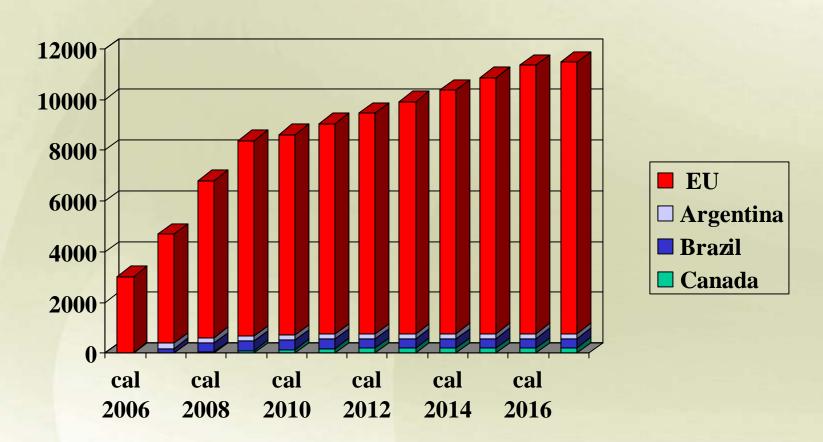
- The international baseline focused on grain and oilseed production of bio-fuels
- Brazil sugar is not part of the baseline modeling system
 - Brazils bio-diesel production was included.

International Baseline

- Our main focus was on a few countries
 - European Union bio-fuel mandate
 - The majority of the mandate is bio-diesel
 - About two thirds bio-diesel
 - We assumed that the EU did not meet their mandate by the end of the baseline
 - Canada has a small bio-fuels sector
 - Both ethanol and bio-diesel

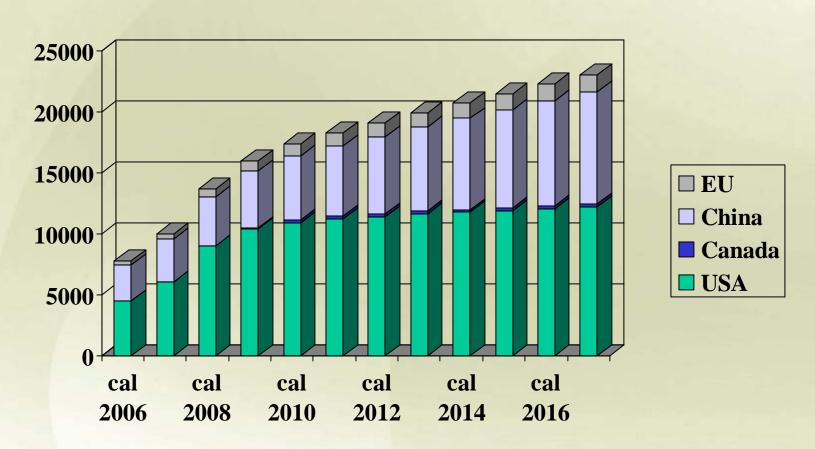
International Baseline

- China was assumed to continue to develop their ethanol sector
 - China has the third largest ethanol sector behind Brazil and the US
- Our main focus was the impact on the grains and oilseeds markets



EU Assumptions Bio-diesel

- Rapeseed oil makes up the 80 percent of bio-diesel oil
 - Oil could be either imported as seed or oil
 - The model determined the levels of production and imports of seed and oil
- Other oils (tropical) make up the other 20 percent of bio-diesel



Bio-diesel Production

Ethanol Production from grain feed stocks

ERS Bio-energy Research Projects 2007-2008

Markets and Trade Issues

- Ethanol and Related Market
- Demand for Ethanol: Implications for Alcohol Fuel Use of Corn
- The Market for Distillers Grains
- The Effect of Different Growth Patterns in the Demand for Ethanol on the Agricultural Sector: A Stochastic Analysis
- Animal Products Sectors Adjustments to Rising Feed Costs Led by Corn
- Economy-wide Impacts of Bioenergy
 - Ethanol and Biodiesel: A National, Regional, and Farm Household Analyses using a CGE Framework
 - An Economy-Wide Assessment of Long-Term Gains from Renewable Fuel Substitution
 - Global Biofuels Policies and Their Effects on Agriculture
 - Bioenergy Implications for China
- Resource Economic Issues
 - Implication for Land, Resource Use, and Environmental Impacts
 - Biofuels and the Changing Agricultural Landscape
 - Biofuels and the Conservation Reserve Program
 - Global Resource Use & Environmental Impacts
 - Economic and Environmental Implications of Biofuels Development and Production: A Global View and Implications for the U.S.
- Rural Economic Issues
 - Implications for Rural Development and Farms
 - Ethnography: The Geography of Ethanol Production and Local Economic Development
 - Bio-energy and the American Farm
- Food Economic Issues
 - How much will higher corn prices increase retail food prices?

Future Modeling Efforts

 As part of the ERS analysis of bio-energy, we plan to develop a small bio-energy sector for our trade and policy model PEATSim

PEATSim

- Partial Equilibrium
- 13 countries/regions
- Thirty-five commodities
- Gross trade model
- Static version and a dynamic
- Explicitly incorporates a wide range of domestic and border policies

PEATSim's Advantages

- Country coverage—major bio-fuel producing countries
- Policy richness of model—can include most of the major policies influencing bio-fuel production, consumption, trade
- Ability to evaluate impacts of individual policy instruments
- Multiple commodities—permits evaluation of cross-commodity impacts

PEATSim

- PEATSim is a partial equilibrium model that uses Mixed Complementarily Programming
 - Allows the model to solve the discontinuous functions associated with TRQ's
 - Should allow us to deal with mandated levels of bio-fuel use
 - Can handle kinked demand functions

PEATSim

- Policy instruments in PEATSim
 - tariffs
 - TRQs
 - support prices
 - producer payments/subsidies
 - production (marketing) quotas
 - export subsidies (implicit)

Commodity Coverage

- Rice, Wheat, Corn, Other coarse Grains
- High-fructose corn syrup (HFCS)
- Sugar
- Soybeans, Sunflower seeds, Rapeseed, Cottonseeds, Peanuts, Other oilseeds
- Soybean oil, Sunflower seed oil, Rapeseed oil, Cottonseed oil, Peanut oil, Tropical oil, Other oilseed oil
- Soybean meal, Sunflower seed meal, Rapeseed meal, Cottonseed meal, Peanut meal, other oilseed meal
- Cotton
- Beef and veal, Pork, Poultry meat
- Milk, Butter, Cheese, Non-fat dry milk, Fluid milk, Whole dry milk, other dairy products

Country Coverage

- United States
- European Union
- Japan
- Canada
- Mexico
- Brazil
- Argentina
- China
- Australia
- New Zealand
- South Korea
- Rest of the world
- India

Modeling Challenges

- Define the relationship between Oil and Gas prices and the demand for ethanol and biodiesel.
 - Develop a small bio-energy component with supply and demand sectors
 - Much work has been done by the previous presenters
 - Incorporate trade as well as any TRQ structure that is necessary
 - Reflect domestic policies on bio-fuels

Summary

- Most of the work done at ERS has been based on assumed levels of bio-fuel use or mandates
- Work on modeling the markets for ethanol and bio-diesel and link these to the agricultural markets.

