Implications of Emerging Technology on the Ethanol Industry

Gary Lemme
Dean/Professor
College of Agriculture and Biological Science
South Dakota State University
Recent Ethanol Industry Expansion

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Biorefineries Online</td>
<td>54</td>
<td>56</td>
<td>61</td>
<td>68</td>
<td>72</td>
<td>81</td>
<td>95</td>
<td>110</td>
</tr>
<tr>
<td>Capacity (mgd)</td>
<td>1748.7</td>
<td>1921.9</td>
<td>2347.3</td>
<td>2706.8</td>
<td>3100.8</td>
<td>3643.7</td>
<td>4336.4</td>
<td>5493.4</td>
</tr>
</tbody>
</table>

U.S. Ethanol Production Capacity by State

<table>
<thead>
<tr>
<th>State</th>
<th>Online</th>
<th>Under Construction/Expansion</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iowa</td>
<td>1701.5</td>
<td>1535</td>
<td>3236.5</td>
</tr>
<tr>
<td>Nebraska</td>
<td>655.5</td>
<td>965</td>
<td>1620.5</td>
</tr>
<tr>
<td>Illinois</td>
<td>831</td>
<td>341</td>
<td>1172</td>
</tr>
<tr>
<td>South Dakota</td>
<td>532</td>
<td>378</td>
<td>910</td>
</tr>
<tr>
<td>Minnesota</td>
<td>541.6</td>
<td>240.5</td>
<td>782.1</td>
</tr>
<tr>
<td>Indiana</td>
<td>102</td>
<td>551</td>
<td>653</td>
</tr>
<tr>
<td>Kansas</td>
<td>212.5</td>
<td>295</td>
<td>507.5</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>230</td>
<td>272</td>
<td>502</td>
</tr>
<tr>
<td>Texas</td>
<td>0</td>
<td>370</td>
<td>370</td>
</tr>
<tr>
<td>Ohio</td>
<td>3</td>
<td>330</td>
<td>333</td>
</tr>
<tr>
<td>Michigan</td>
<td>155</td>
<td>107</td>
<td>262</td>
</tr>
<tr>
<td>North Dakota</td>
<td>83.5</td>
<td>150</td>
<td>233.5</td>
</tr>
<tr>
<td>New York</td>
<td>0</td>
<td>164</td>
<td>164</td>
</tr>
<tr>
<td>Missouri</td>
<td>155</td>
<td>0</td>
<td>155</td>
</tr>
<tr>
<td>Oregon</td>
<td>0</td>
<td>143</td>
<td>143</td>
</tr>
<tr>
<td>Colorado</td>
<td>85</td>
<td>40</td>
<td>125</td>
</tr>
<tr>
<td>Tennessee</td>
<td>67</td>
<td>38</td>
<td>105</td>
</tr>
<tr>
<td>Georgia</td>
<td>0.4</td>
<td>100</td>
<td>100.4</td>
</tr>
<tr>
<td>California</td>
<td>68</td>
<td>0</td>
<td>68</td>
</tr>
<tr>
<td>Arizona</td>
<td>0</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>Washington</td>
<td>0</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>Kentucky</td>
<td>35.4</td>
<td>0</td>
<td>35.4</td>
</tr>
<tr>
<td>New Mexico</td>
<td>30</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Wyoming</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>5493.4</td>
<td>6129.5</td>
<td>11,622.9</td>
</tr>
</tbody>
</table>

Source: Renewable Fuels Association, January 2007
U.S. Ethanol Biorefinery Locations

- Biorefineries in production
- Biorefineries under construction

of biorefineries: 110 as of January 1, 2007

Source: Renewable Fuels Association
Emerging Ethanol Technology

• **TIME LINE**
 – Current: Corn-based Dry Mill Production
 – Near future (1-3 years): Corn Ethanol with Oil Recovery
 – Intermediate Future (2-4 years): Corn Ethanol with Oil Recovery and Fiber Conversion to Ethanol
 – Distant Future (8-10 years): Biomass Conversion to Ethanol
Ethanol Industry

• **Rural Community Economic Development, 2006**
 - $41.1 billion gross output
 - 160,231 jobs
 - $2.7 billion new tax revenue

• **Producer ownership/investment**
 - Income diversification ($0.60 / gallon dividends)
 - Production integration & partnerships

• **National fuel security**
1 bushel corn grain =
- 2.8 gallons of ethanol
- 18 pounds dried distillers grains (DDGS)
- 0 pounds oil
- 18 pounds carbon dioxide

Yeast convert sugars to ethanol and CO$_2$
In equal amounts
Ethanol Dry Milling Process
Source: American Coalition for Ethanol

- Corn
 - Grind
 - Cook
 - Liquify
 - Saccharify
 - Enzymes
 - Fermentation
 - Bler
 - Distillation
 - Whole Stillage
 - Centrifugation
 - Thin Stillage
 - Evaporation
 - Distillers Solubles
 - Wet Grains
 - Dryer
 - Syrup
 - Distillers Grains w/ Solubles
 - Dehydration
 - 190 Proof Ethanol
 - 200 Proof Ethanol
 - Product Storage
 - Denaturant
 - Fuel Ethanol
 - Distillers Dried Grains
DDGS Feeding Recommendations

<table>
<thead>
<tr>
<th>Specie</th>
<th>Lbs. DDGS/HD/Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef Cow</td>
<td>5-7</td>
</tr>
<tr>
<td>Beef Steer/Heifer >500 lbs</td>
<td>3-4.5</td>
</tr>
<tr>
<td>Calves < 500 lbs</td>
<td>2-3</td>
</tr>
<tr>
<td>Dairy Cows</td>
<td>5-10</td>
</tr>
<tr>
<td>Dairy Heifers</td>
<td>1-5</td>
</tr>
<tr>
<td>Swine nursery</td>
<td>0.1-0.5</td>
</tr>
<tr>
<td>Swine Grow-Finish</td>
<td>0.6-1.2</td>
</tr>
<tr>
<td>Sows & Boars</td>
<td>0.8-3.2</td>
</tr>
<tr>
<td>Sheep Ewe</td>
<td>2</td>
</tr>
<tr>
<td>Sheep Lamb</td>
<td>0.5-1.1</td>
</tr>
<tr>
<td>Chicken Broilers</td>
<td>0.4</td>
</tr>
<tr>
<td>Chicken layers/peak season</td>
<td>0.022</td>
</tr>
<tr>
<td>Turkey Hens</td>
<td>0.035</td>
</tr>
</tbody>
</table>

[2006 North American Distillers Grains Consumption]

- Dairy 48%
- Beef 42%
- Poultry 3%
- Swine 9%

Source: Commodity Specialists Co.
Current South Dakota Usage of DDGS

- Beef = 404,750 T/YR
- Dairy = 201,913 T/YR
- Swine = 305,327 T/YR
- Sheep = 34,050 T/YR
- Poultry = 67,002 T/YR

65% of DDGS produced in SD could be consumed in SD
National 2007 DDGS Production

• **Situation**

5.5 billion gallons per year ethanol produced/2.8 gal/bu = 1.9 billion bushels corn consumed*18 lbs DDGS per bushel consumed = 3.5×10^{10}/2000 lbs/t = **17.65 million tons DDGS**

Solution?
Near Future Technology: Corn Ethanol with Oil Recovery

• Process
 – germ recovery (Fractionation of corn prior to fermentation)
 – Co-product oil separation (post-distillation oil capture)

• Impact
 – 1.5 lbs oil/bushel for biodiesel or food uses
 – New DDGS products (range cubes, lick tubs)
 – 4% higher protein DDGS

• Yield/bushel corn
 – 2.8 gallons ethanol
 – 15.5-16.5 lbs DDGS
 – 1.5 lbs oil
 – 18 pounds carbon dioxide
Intermediate Future Technology: Corn Ethanol with Oil Recovery and fiber converted to Ethanol

• Process
 – Up stream fractionation with germ recovery (fibers > fermentable sugars using cellulase enzymes & fermented to ethanol)
 – Hydrolyze DDGS with cellulase enzymes yield fermentable sugar for fermentation to ethanol
 – Thermal catalytic conversion to convert DDGS to sugars for ethanol

• Impact
 – 1.5 lbs oil/bushel for biodiesel or food uses
 – DDGS reduced by 2/3

• Yield/bushel corn
 – 3.4-3.6 gallons ethanol
 – 5-6 lbs DDGS
 – 1.5 lbs oil
 – 23-24 pounds carbon dioxide
“Rumpelstiltskin spins gold from straw”,
Grimm Brother

Cellulosic Ethanol

South Dakota State University
College of Agriculture & Biological Sciences
Distant Future (8-10 years): Biomass Conversion to Ethanol

• **Process**
 – Biomass feedstocks (1/3 cellulose, 1/3 hemicellulose, 1/3 lignin)
 – Developing Technology
 • (>80% cellulose & hemicellulose conversion required)
 • Biological conversion processes to sugars to ethanol
 • thermal kinetic conversion processes to sugars to ethanol

• **Impact**
 – No DDGS or feed materials
 – No oil produced

• **Yield/ton Biomass**
 – 90-100 gallons of ethanol
 – 600-650 lbs lignin (burned as boiler fuel)
 – 620-680 lbs CO₂
THE PRODUCTION OF ETHANOL FROM CELLULOSIC BIOMASS
Growing America’s:
Bioresnewable Energy

Ag residues
Corn stover (4 tons/acre/year)
Small grain straw (1 ton/acre/year)
Bioenergy Field

Energy Crops

• Perennial crops
• Grass crops (5 - 20 tons/year)
• Woody crops (10 tons/year)
• 1,000 gallons ethanol/acre
This study estimates the technical biomass resources currently available in the United States by county. It includes the following feedstock categories:

- Agricultural residues (crops and animal manure)
- Wood residues (forest, primary mill, secondary mill, and urban wood)
- Municipal discards (methane emissions from landfills and domestic wastewater treatment)
- Dedicated energy crops (on Conservation Reserve Program and Abandoned Mine Lands)
Challenges to Biomass Energy

- Developing a stable & sustainable feedstock supply
- Feedstock infrastructure
- Conversion efficiency hurdles
- Cost-competitiveness
Impacts Public Policy on Technology and Industry
Public Policy Issues facing Biorenewable Energy Industry

1. Effective & timely permitting processes
2. Infrastructure investment:
 roads, rails, water, capital
3. Environmental and transportation regulations/mandates on producers and consumers
4. Intergenerational farm transfer
5. Economic competitiveness
6. Workforce development:
 education system,
 vitality of communities
Adapting technology to grow rural America
Stewardship of natural resources while growing the economy (field to fuel tank to family analyses)
Emerging Ethanol Technology

TIME LINE
- Current:
 - Corn-based Dry Mill Production
- Near future (1-3 years):
 - Corn Ethanol with 1.5 lbs/bu Oil Recovery
- Intermediate Future (2-4 years):
 - Corn Ethanol with 1.5 lbs/bu Oil Recovery and Fiber Conversion to 0.8 gal/bu Ethanol
 - 2/3 reduction in DDGS
- Distant Future (8-10 years):
 - Biomass Conversion to 110 gal/t Ethanol
 - No DDGS; No oil
How much ethanol can SD produce from corn stover? (2004 data)

- 4.15 million acres corn @ 130 bu/a
- 539.5 million bu corn = 15.1 million tons corn & 15.1 million tons stover (1:1 mass ratio)
- 45% stover removal (sustains tilth) = 6.8 million tons
- 680 million gallons ethanol/year produced (100 gal ethanol/ton stover)
- Plus {1.51 billion gallons ethanol from grain} (2.8 gal/bu grain)