Summary

• David zilberman
What have we learned?

- Biofuel is global- US Brazil China Europe are major player
 - Japan plays by buying
 - Africa and India may join
- Biofuel is it infancy- in the US and Brazil
 - 4 million hectare in Brazil
 - 5-6 Million acre in the US
- It is small for energy but big for ag
- It is work in progress depending on policy technology&other fuels
- There is a large potential for increased cane biotech
 A big potential to increase corn biofuel in US
 - But in US cellulous is the key for large scale expansion
The importance of complementarity

• You need adjustment at the pump and at the wheel (the flex car) the increase demand for biofuel

• Development of a new ag industry is a two step dance
 – Need both processing capacity and production

• That lead to need for contracting and other insurance and even support effort
It is an industrial adoption problem now

• With Sugar cane and corn the real investment is processing from corn to biofuel and residual material (distillers grain)
• Biofuel grew where processing capacity was established. Adoption of processing technology is S shaped
• We are in the middle of a take off period
• Need to understand
 – the economics of investment in processing
 – The economics of growing biofuel crops
 – Contract and relation from farmers to processors
 – Role of policy in adoption-
 • higher subsidy seem to induce adoption
Ag and energy are interdependent

• The economics of biofuel depend on the price of crude
 – This is the second coming
• Need to study biofuel within context of energy and climate change
• Ag policy may be integrated with energy policy
• Biofuel is subsidized for reasons of national security and environmental externality
• Ag Policies in transition to energy emphasis
 – Modify CRP allow production of biofuel
 – Insure farmers against low biofuel prices (deficiency program for biofuel)
 – Consider Insuring processor against low energy prices
Biofuel solves some problems and raises other

• Biofuel is good for
 – Farmers
• rural development(47 Billions)
• climate change,
 – energy independent-

• but
 – it increases food prices,
 – increase risk of shortages as inventory decline(in relative terms)
 – and may be bad for the poor.
Biofuel - lesson in technological change

• Innovation and change are induced by economic and political realities
• It takes complementary Public and Private actions
• Change combines several technological breakthroughs with continuous gradual improvements
• Needed Breakthrough
 – Pretreatment of cellulosics
 – Nitrogen fixation
 – Cheap and effective Enzymes
Evolution of technology

• Basic work is mostly done or financed by private sector

• Technology transfer leads to subsidized yet mostly private sector financed development

• Industrial evolution
 – emergence of new players (Broin) combining knowledge and finance
 – Old players reinvent themselves - mergers & acquisition
 – It take local entrepreneurship to lead and attract innovation
Modeling issues

• Long term and short term elasticity
 – The unconstrained demand for biofuel is elastic - especially when it is a small fraction of the supply for oil. But short term demand for corn for biofuel may be inelastic because of capacity constraints.

• Residue management-
 – what will happen to the residue
 – What is the value of the residues by products
 – How distiller’s grain etc affect other market

• How to model the evolution of the technology?
• How to model the IO of energy/nexus
Modeling issue: Biofuel and energy pricing

- Fossil fuels pricing is a dynamic problem
- It is a game between Oil producers and buyers
- How Build up of alternative energy capacity changes energy pricing
- How energy pricing will affect biofuel evolution
- Complicating factor- Climate change
Modeling framework

• There are several global food models- biofuel is added
 – Some are partial equilibrium
 – Other CGE

• Challenge
 – Incorporate policy in models
 – Move multiple market- link ag to to energy markets
 – Another linkage biofuel and byproducts
 – Have a system of sectoral models linked together

• Introduce dynamic elements

• Predict Impact on asset values

• Impact modeling requires information on key parameters
Econometrics

- Estimation of biofuel productivity (multi-product, multilevel) and supply
- Adoption (risky choice) when and where new plants will develop? How incentive will affect them? Increase in capacity
- Demand (consumer, oil company, residue product)
 - Do you study gasoline market or reduce forms?
 - How prices, polices and market situation will affect demands?
 - Residue demand
- Trade, market clearing and price transmissions (biofuel linkage to fuel, crops to livestock)
- Data is lacking - may need surveys
- Identify key parameters to be estimated for other task
Research issue: Climate change and biofuel

• Contributing of Biofuel to build up of global warming gases
 – Substitution of fossil fuel
 – Expansion of farming

• How to compensate Biofuel within cap and trade frameworks
Policy Research

- Ag policy emphasis shifts from payment to farmers to payment for environmental services and sustain biofuel
 - High Commodity prices remove needs for support
 - Environmental services are yet genuine
 - Biofuel would lead to adjustments
 - Support payment in time of low oil prices
 - Assurance of food availability in times of high oil prices

- Energy policy- what about taxing fuels? Other energy sources?

- Climate change policy-
 - Carbon Credit for biofuel
 - Biofuel as part of clean development mechanism

- Development issues
 - Poverty and food security impacts of biofuel
Science and technology policy

• Biofuel is research dependent -
 – need resources
 – Effective IPR

• Higher food productivity will reduce negative side effect of biofuel
 – Need technology regulations that will facilitate change and safety

• Research on Permitting and regulation is crucial
We move from one temporary solution to another

- Corn ethanol is a stop gap measure
- Sugarcane will stay, as well as palm oil for bio diesel
- The yields of these crop will go up—they are not finished yet.
- But there will be a synergistic relation between developing ethanol from corn, sugarcane and research on celluloids to generate high value second generation fuels
Ag is changing

• Biofuel is a major shift
• Ag is more than food and fiber
• Ag econ is more than “Ag+natural resources”
• Ag policy is part of resource and energy policy
• We need to build a continuous effort to build capacity to study this transition
• What is next?