The Impact of Biofuel Production on Crop Production in the Southern Plains

Holly Regan and Phil Kenkel
Dept of Agricultural Economics
Oklahoma State University

Future Ethanol Production

<table>
<thead>
<tr>
<th>Year</th>
<th>RFS</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>4.0</td>
<td>5.1</td>
</tr>
<tr>
<td>2007</td>
<td>4.7</td>
<td>6.6</td>
</tr>
<tr>
<td>2008</td>
<td>5.4</td>
<td>7.9</td>
</tr>
<tr>
<td>2009</td>
<td>6.1</td>
<td>8.6</td>
</tr>
<tr>
<td>2010</td>
<td>6.8</td>
<td>9.3</td>
</tr>
<tr>
<td>2011</td>
<td>7.4</td>
<td>9.9</td>
</tr>
<tr>
<td>2012</td>
<td>7.5</td>
<td>10.3</td>
</tr>
</tbody>
</table>

Biofuel Production is Expanding from the Grain Belt to (grain deficit) Regions in the Southern Plains

- Lower natural gas prices, reduced transportation costs for co-products and ethanol
- Oklahoma: 3 ethanol plants (150 M gallons total capacity) in construction- feed stock exceeds total OK feed grain production

Cellulosic-based Ethanol

- Greatly expands ethanol potential
- Higher infrastructure costs but potentially lower production costs
- Projecting cropping shifts into cellulosic feed stocks has critical implications for infrastructure development and agricultural impacts
- Many projections about cellulosic ethanol ignore economic or market forces

A New OPEC Nation

- “Oklahoma could become another OPEC nation by converting crop land to switchgrass production” New York Times
- First speaker at the Oklahoma Governors Conference on Biofuels stated that Oklahoma had the potential to produce 12B gallons of ethanol
Study Projected Oklahoma’s Biofuel Crop Production

- Multi Disciplinary study funded by the Oklahoma Secretary of Energy
- Determine current biofuel crop potential
- Determine potential land shifts into grain-based biofuel feed stocks
- Determine potential land shifts into cellulosic-based biofuel feed stocks
- Results have general implications for other feed grain deficit regions

Data and Methods

- County level crop budgets developed for every major crop
- Conversion rates and costs estimated for grain-based ethanol, cellulosic-based ethanol and biodiesel
- Biofuel production costs included all variable and fixed costs plus a 15% return on invested capital
- Residual value of biofuel product assumed to accrue to the crop producer

Data and Methods (continued)

- For each crop and county land was allowed to shift from the current crop to the biofuel crop when the net returns for the biofuel feed stock exceeded the net returns for the current crop
- First considered grain-based ethanol and biodiesel then expanded to consider cellulosic-based ethanol

Data and Assumptions

- OSU Enterprise budgets (cost adjust with yield)
- 5 year time series of yields and prices
- 2.8 gallons/bu of ethanol for corn, 75 gallons per ton for switchgrass
- Ethanol variable production costs: $.50/gallon for grain based and $.75/gallon for cellulosic
- $1.5/gallon capital cost for grain based, $3.00/gallon for cellulosic

Assumptions (continued)

- Canola yields based on wheat yields
- County CRP rental rates used to represent current income from CRP land
- Switchgrass production assumed to equal alfalfa yield (4/ton acre average) with separate estimates for CRP land.
- Hay budgets used to estimate harvest costs
- Transportation costs not considered

Summer Crops Allowed to Shift to Corn or Sorghum. Winter Crops to Barley

- Corn & Sorghum
- Cotton → corn, sorghum
- Soybeans → corn or sorghum
- Alfalfa → corn or sorghum
- Hay → corn or sorghum
- Oats → corn or sorghum
- Peanuts → corn or sorghum
- Wheat → barley
- Rye → barley
Summer Crops also Allowed to Shift to Soybeans, Winter Crops to Canola

- Soybeans
- Cotton → soybeans
- Alfalfa → soybeans
- Hay → soybeans
- Oats → soybeans
- Peanuts → soybeans
- Wheat → canola
- Rye → canola

Cellulosic Ethanol Crops

- Wheat straw
- Corn Stover
- CRP acres → switchgrass
- Crop and hay acreage → switchgrass

Current Biofuel Crop Production

- Corn
 - 200,000 acres
 - 26M bushels
 - 75M gallons ethanol potential
- Sorghum
 - 310,000 acres
 - 13M bushels
 - 37M gallons ethanol potential
- Soybeans
 - 238,000 acres
 - 9M bushels
 - 16M gallon biodiesel potential

Price Sensitivity of Ethanol Crop Conversion

- Land will not shift out of wheat, cotton or peanut at ethanol prices below $3.00
- At $3.75/gallon ethanol revenues exceeds historical crop revenues
Total Grain Based Ethanol Potential

Ethanol Potential from Grain Crops at $2.50/gallon

Gallons

Ethanol crop production in irrigated areas and more marginal areas of the wheat belt.

Biodiesel Crop Production

Shift of Cropland into Biodiesel Feedstocks at $2.50/gallon Biodiesel

Biodiesel Feedstock Production at $2.50/gallon

Realistic potential is around 400M gallons.
Cellulosic ethanol would impact different crops
And occur at lower ethanol prices

Cellulosic Ethanol Production Potential at $2.50/gallon

Cellulosic feedstock production would center in the wheat belt

<table>
<thead>
<tr>
<th>GALLONS</th>
<th>0 - 12M</th>
<th>12M - 36M</th>
<th>36M - 100M</th>
<th>100M - 170M</th>
<th>170M - 280M</th>
</tr>
</thead>
</table>

Maximum Economically Efficient Potential (gallons)

<table>
<thead>
<tr>
<th></th>
<th>$2.50 Ethanol and Biodiesel</th>
<th>$5.00 Ethanol and Biodiesel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain based ethanol</td>
<td>666M</td>
<td>970M</td>
</tr>
<tr>
<td>Grain and Cellulosic</td>
<td>2 B</td>
<td>2.4B</td>
</tr>
<tr>
<td>Biodiesel</td>
<td>388 M</td>
<td>1 B</td>
</tr>
</tbody>
</table>

Conclusions

- Biofuel prices above $3.5/gallon required to shift majority of acreage to biofuel feedstocks
- Marginal wheat land will be the first to shift to grain-based ethanol feed stocks
- Land shifts to biodiesel feed stocks at lower biofuel prices
- Cellulosic feed stock may center on crop land, not marginal land
Implications

• Biofuels may have major impacts on land use
• Changes will impact food, feed and livestock
• Predictions on land use, regional location and total production must consider economics