

Killing two birds with one stone: the US and the EU biofuel programs

Jean-Marc Bourgeon and David
Tréguer

INRA, France

Why are biofuels being produced?

The biofuel programs have a dual objective:

- environmental (CO_2 mitigation, fuel oxygenation)
- agricultural income
- ⇒How can both objectives be lead simultaneously?

Fiscal incentives needed to develop biofuels

Even at the ongoing oil prices, biofuel production is still unprofitable in the EU and in the US.

⇒ Fiscal incentives have been established in order to bridge the gap between the market price of biofuels and their costs.

The agricultural policies could be profoundly altered:

To summarize, the production of energy crops could cause the following scenario:

The competition between food and energy uses \Rightarrow \nearrow crop prices \Rightarrow \nearrow Agricultural income \Rightarrow \searrow "traditional" agricultural payments.

Architecture of the model

The model involves two sectors (each modeled through a representative firm)

- An incumbent food sector "F"
- . A newcomer: the energy sector "E"

Each sector buys the same homogeneous good from a competitive agricultural supply modeled by the inverse supply function w(X), with w'(.)>0.

Modelling the food sector

We postulate an increasing and concave production function for the food sector: $f_F^\prime>0$ and $f_F^{\prime\prime}<0$

The program of the representative firm of the food sector can be written as:

$$\max_{x_F} p_F f_F(x_F) - w(X)x_F$$

Modelling the biofuel sector

$$f_E(x_E) = \gamma_E x_E$$
,

where γ_E is a positive parameter.

Assume that the energy firm cannot operate without subsidy since:

$$p_E \gamma_E < w(X_0)$$
,

where ${\cal X}_0$ is the total quantity of crops bought by the food firm when no biofuel is produced.

⇒ The energy sector receives a subsidy:

$$\sigma = w(X) - p_E \gamma_E$$

in order to attain the level Q/γ_E .

Quantity of food crops vs energy crops

As $x_{\cal E}$ increases, the aggregate quantity X increases and $x_{\cal F}$ decreases, i.e.

$$\frac{dx_F}{dx_E} \in [-1{,}0]$$

Hence:

$$\frac{dX}{dx_E} = 1 + \frac{dx_F}{dx_E} > 0$$

Who gains, who loses?

As x_E increases

- The agricultural surplus increases
- The consumers' surplus decreases
- \bullet The agro-food industry may gain ($|\epsilon_F|<1)$ or lose ($|\epsilon_F|>1)$
- The biofuel sector makes no profit (perfectly adjusted subsidy)

The social welfare function

The regulator maximizes the following SWF:

$$\max_{x_E} \overline{\Pi}_A + \Pi_C(x_E) + \Pi_F(x_E) - (1+\lambda) \{T(x_E) + [\overline{\Pi}_A - \Pi_A(x_E)]\} + qx_E$$

$$s.t.x_E \geq Q/\gamma_E$$

The optimal production of energy crops

The first-order condition of the SWF leads to the following equation:

$$\lambda x_F w'(X) \frac{dX}{dx_E} + q - (1+\lambda) \{w(X) - p_E \gamma_E\} \le 0 (x_E^* \ge 0)$$

This equation determines the optimal quantity of energy crops \boldsymbol{x}_E^*

Comparison with the Pigovian level

If $\lambda=0$, we would have the following first-order condition:

$$q - [w(X) - p_E \gamma_E] \le 0(x_E^* \ge 0)$$

which is the Pigovian rule: the optimal subsidy should equalize the marginal benefit of GHG mitigation.

The real cost of the biofuel program

Hence, if $\lambda>\lambda_s,\,x_E^*$ is strictly positive and we have:

- if $Q/\gamma_E < x_E^*$, the biofuel constraint is slack and it is optimal to produce energy crops up to x_E^* .
- If $Q/\gamma_E>x_E^*$, the biofuel constraint is binding. However, the real cost of the environmental program should be calculated only on the residual quantity $Q/\gamma_E-x_E^*$.

The social welfare function with imports

The program has now the following form:

$$\max_{TE,TI} \overline{\Pi}_A - (1+\lambda) \{T(x_E + x_I) + (\overline{\Pi}_A - \Pi_A(x_E))\} + \Pi_F(x_E) + q(x_E + x_I)$$

$$s.t.x_E + x_I \ge Q/\gamma_E$$

Imports

First-order conditions of the program:

$$\lambda x_F w'(X) \frac{dX}{dx_E} - (1+\lambda) \{w(X) - p_E \gamma_E\} + q \le 0 (x_E^* \ge 0),$$

$$-(1+\lambda)(\overline{w} - p_E \gamma_E) + q \le 0(x_I^* \ge 0)$$

Imports

if $\lambda > \lambda_N$, x_E^* is strictly positive and we have:

- if $Q/\gamma_E < x_E^*$, the biofuel constraint is slack and it is optimal to produce energy crops up to x_E^* .
- If $Q/\gamma_E>x_E^*$, the biofuel constraint is binding and it is optimal to produce energy crops domestically at level $\hat{x}_E>x_E^*$. Importations of raw material are given by $x_I^*=Q/\gamma_E-\hat{x}_E$.
- \bullet The internal price of agricultural feedstock verifies $w(X)>\overline{w}$ leading to subsidies $\sigma_E>\sigma_I$

Biofuels and the environment

Environmental policies and biofuel production

- Positive externalities of biofuels concerning GHG emissions.
- But: negative externalities in agricultural production (fertiliser and phytosanitary products), due to a more important feedstock production.

Let ${\cal C}(X,e)$ denote the cost function of the representative farmer $({\cal C}_X=w.)$

Biofuels and the environment

The regulator chooses the optimal quantity of energy crops and the optimal level of environmental standard \bar{e} . Neglecting the constraint on the biofuel production, the agency program can thus be written as:

$$\begin{split} \max_{x_E,x_F,\overline{e}}\overline{\Pi}_A + CS + \Pi_F - (1+\lambda)[(C_X - p_E\gamma_E)x_E + \overline{\Pi}_A - \Pi_A] + B(x_E) - D(\overline{e}) \\ s.t.EQFood \end{split}$$

Biofuels and the environment

If $\lambda>\lambda_{s},$ and Q=0, the optimal policy \bar{e}^{*},x_{E}^{*} and x_{F}^{*} is implicitly defined by

$$(1+\lambda)[C_X - p_E\gamma_E] - q = \lambda x_F C_{XX} dX/dx_E =$$

$$-\frac{C_{XX}}{C_{Xe}}\{-(1+\lambda)C_e - D'(\bar{e})\}$$

 \Rightarrow The optimal standard \overline{e}^* is more stringent than the Pigovian level

Conclusion

Biofuel policies might deeply alter agricultural and environmental policies.

- The support to the agricultural sector could be lowered (as the subsidies for biofuels partly substitute for them).
- Environmental issue will be crucial, with an intensive production of energy crops.