

READY for RESEARCH

The National Corn-to-Ethanol Research Center, Edwardsville, IL has opened its doors to those who want to test the latest ethanol technology.

Cellulosic Ethanol Technology Assessment

Rod Bothast National Corn-to-Ethanol Research Center Southern Illinois University Edwardsville

Impact of corn ethanol for replacing imported oil

(RFA & CRA, 2002)

Biomass Feedstock Availability in the U.S.

	Estimated Qty.	Energy Use	Available New Energy
Urban Wood	0.59	0.08	0.51
Forest Residues	0.38	0.37	0.01
Mill Residues	0.66	0.65	0.01
Ag Residues	3.95	0	3.95
Energy Crops	1.07	0	1.07
Total (Quads)	6.65	1.1	5.55

M.E. Walsh, D.G. De La Torre Ugarte, et. al., Biomass Feedstock Availability in the United States: 1999 State Level Analysis, Oak Ridge National Laboratory, Updated January **2000**

US Biomass Sources

ECONOMICAL

ABUNDANT & AVAILABLE

Challenge

Composition of Biomass

Cellulose & Hemicellulose are carbohydrates that can be broken down to free sugars and fermented to ethanol. Lignin has a high heating value.

Others: extractables, pectin, and ash.

Source: www.nrel.gov

Plant Cell Wall Structure

Utilization of Biomass for Production of Fuel Ethanol

Amounts of feedstocks to produce 10 ml ethanol

Moisture Content

Corn	15%	
	400/	

Fiber 46%

DDG 64%

Stover 5%

500 ml graduated cylinders used for comparisons

Corn Kernel Cellulosics

Near Term Technology Validation

No incremental supply chain Costs

Potential 10% Yield increase

4.5 M gal Ethanol per plant Annually

Minimal incremental capital

DDGS weight reduced 44%

No increase in corn acres

Selected Pretreatment Strategies

Acid	<u>Pretreatment</u>	<u>Pentoses</u>	<u>Inhibitors</u>	
	Strong Acid	+	++	
	Dilute Acid	+	++	
	Hot Water	-	+	
	AFEX	-	-	
Base	Alkaline Peroxide	-	-	

Recombinant Microorganisms for Fermentation of Mixed Sugars to Ethanol

• Recombinant organisms are now available

- Recombinant Escherichia coli
- Recombinant Saccharomyces
- Recombinant Zymomonas
- Recombinant Klebsiella oxytoca

Commercialization prospects

- BCI with recombinant *E. coli*
- logen with recombinant Saccharomyces

Ethanol Fermentation Of Corn Fiber Hydrolysate by *E. coli* FBR5

Future Strains: Critical Traits

- Pentose utilization
- High ethanol yield and productivity
- Genetic and phenotypic stability
- Hardiness (tolerance to ethanol and inhibitors)
- Efficient use of multiple sugars
- Growth at low pH/high temperature
- Ease of use with current production technology

Ethanol cost derived from \$50/ton corn stover versus equivalent corn prices in dry-grind processing

	Conversion Rate Gallons Per Ton	Enzyme Cost Per Gallon	Cost Per Denatured Gallon	Corn Equivalent Prices
Future	89.7	\$0.10	\$1.25	2.35
		\$0.25	\$1.40	2.98
Base	68.0 ^b	\$0.10	\$1.65	4.02
		\$0.25	\$1.79	4.62

From Tiffany and Eidman, 2004

Cost Comparison for Corn & Stover

	Corn <u>Starch</u>	Corn <u>Stover</u>	
Annual Ethanol (MMGal)	50	50	
Ethanol Prod. Cost (\$/gal)	0.96	1.45	
Total Prod. Costs (MM\$/yr)	47.8	72.0	
Co-product Credit (\$/gal)	0.26	0.13	Норо
Feedstock costs ¹ (\$/gal)	0.793	0.51	Hope for future
Capital Invest. (MM\$)	48.0	193.7	ratare

¹Corn at \$2.25/bu & stover at \$40/ dry ton USDA, ERRC, March 2005

Biomass Processing: Example 1

Technological Constraints to Scale-UP

- Pretreatment- Substrate more reactive to enzymes
- Fermentation inhibitors
- Genetic stability, productivity and alcohol tolerance of recombinant microorganisms
- Recovery of dilute alcohol- Solids Loading