New Results from Process Standards Data

Johannes Moenius
University of Redlands

ERS Workshop on EU Food Regulations,
Washington DC, Nov 3, 2005

Financial Support from the Searle Fund is gratefully acknowledged
The Good, the Bad and the Ambiguous: Standards and Trade in Agricultural Goods with the EU

Johannes Moenius
University of Redlands

Financial Support from the Searle Fund is gratefully acknowledged
Some Personal Experience …
What can we learn from that?

- Countries have differing product / process specifications which help to characterize the technical and economic environment of a country.

- Some sort of product adaptation may be required to operate goods in a different country.

- Precise information about the technical environment is required to properly adapt the product to the foreign market.
“The use of product standards ... as a means of denying market access to foreign suppliers is the most important issue in international merchandise trade policy today.

Robert G. Hawkins
The Prevailing View

- **The Good**: Internationally harmonized standards remove trade-barriers

- **The Bad**: Country-specific standards create trade barriers

- **The Asymmetric**: Country-specific standards of large countries are less of a barrier, since adaptation costs are a fixed cost.
Types of Standards

Importing Country B

Exporter Standards

Exporting Country A

Specific | Shared

Shared | Specific

Exports
My Previous Findings (Moenius 2002)

- Created a data-set of 14 countries, 16 years, 471 SITC industries for shared as well as country-specific standards
- Estimated effect of standards on trade-flows with large sample gravity-regression
- Found that:
 - Shared standards promote trade
 - Importer standards hinder trade for simple goods
 - Importer standards promote trade for complex goods
• Shared Standards **remove** barriers

• Importer standards …
 …**are a barrier** relative to **shared** standards
 …**can reduce barrier** relative to **no** standards:
 – Lower search costs
 – Lower product adaptation costs through exact knowledge of specification
 – Lower variety, fewer specifications to adapt to

• **Trade-off**: Second effect dominates for complex goods
Question:

The US blames the EU for blocking market access with standards and vice versa.

– Is that (statistically measurably) true in general?

– Specifically, is it true for agricultural goods?

– And if yes, is this true for all standards, all agricultural products and at all times?
My Approach:

- Large sample gravity equation

- Data on bilaterally shared and country-specific standards for 471 industries (80 agriculture), 15 countries for 1980-1995

- Estimate results for bilateral trade relationships between US, some EU and some non-EU countries.
My Answers

- On average, same as in my previous work: country-specific standards hinder trade in simple goods and promote trade in complex goods, but strength of the effect varies by country and industry.

- On average, EU standards seem to hinder trade in agricultural products.

- This effect varies widely by agricultural industry: even in some agricultural products, it seems that the effects are rather positive.

- There is a tendency towards stronger barrier effects of EU agricultural standards during the sample period.
My Explanation:

- **The Good**: Standards of any kind, if reliably enforced, reveal **information** about the technical and economic environment of a country → costless, public good

- **The Bad**: Country-specific standards create trade **barriers**: product adaptation costs, costs of process changes, testing costs → born by private parties

- **The Ambiguous**: **Harmonization** reduces product adaptation costs but also may reduce variety. Informational value may be small → overall effect may be **negative**
The Trade-Offs

Adaptation Cost

Information-Provision

Country-Specific

Harmonized

Variety-Reduction
My Contribution:

• **Econometric analysis** of the effects of standards in agricultural industries on Trade-Flows

• Identify which of the three effects dominate for **80 agricultural industries** over time

• Identify which of the three effects dominates for **EU-standards**
Outline of the Presentation

- Introduction
- Theoretical Framework
- Empirical Specification
- Estimation Results
- Summary
Some Definitions:

Standards are

• Product and process specifications
• They harmonize the treatment of intermediates or attributes of final goods
• Three types: de facto, de jure and institutional standards
• Here: institutional standards only (TRs not included)

My measure of shared standards:

• Links between documents
Links between Documents:
Previous Research-Overview:

• Literature on standardization and trade has been growing over the last few years, largely sponsored by the World Bank and the DIN-Institute.

• General Literature on Non-Tariff-Barriers (NTBs) helpful

• The theoretical literature provides no clear prediction
Outline of the Presentation

• Introduction

• Theoretical Framework

• Empirical Specification

• Estimation Results

• Summary
The Gravity Model:

\[
\text{Bilateral Trade Volumes} = f(\text{Economic Masses, Distance, Other Factors})
\]

Economic Masses, Distance: country-pair specific
Other Factors
\[
\begin{align*}
\text{Country 1} & \quad \text{Economic Mass} & + \\
\text{Country 2} & \quad \text{Economic Mass} & + \\
\hline
\text{Distance} & & -
\end{align*}
\]

Fixed Effects

\[
\begin{align*}
\text{country-pair-specific} & & \text{industry-specific}
\end{align*}
\]
Import Equations:

\[\ln(IM_{ijkt}) = \alpha + \beta_1 \ln(SST_{ijkt}) + \beta_2 \ln(CSTE_{jkt}) + \beta_3 \ln(CSTI_{ikt}) + F_{ijt} + \varepsilon_{ijkt} \]

\(IM_{ijkt}\) dollar value of imports into country \(i\) from country \(j\)

SST shared standards

CSTE country-specific standards of exporting country

CSTI country-specific standards of importing country

\[\ln(IM_{ijkt}) = \alpha + \beta_1 \ln(SST_{ijkt}) + \beta_2 \ln(CSTE_{jkt}) + \beta_3 \ln(CSTI_{ikt}) + D_{kt} + F_{ij(2k)t} + \varepsilon_{ijkt} \]

D dummy-variable

2k 2 - digit SITC
Data-Description:

- **Sources:**
 - Trade data: World Trade Database
 - Standards Data: filtered from PERINORM (DIN, AFNOR, BSI)
 - (National accounts and exchange rates: IMF)

- **Specifics**
 - 471 SITC industries
 - Countries: Japan, Austria, Australia, Belgium, Switzerland, Germany, Spain, France, UK, Netherlands, Norway, Poland, Turkey, US
 - Annual: 1980-1995
Country-Groups

<table>
<thead>
<tr>
<th>Group</th>
<th>Countries (Comments)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>(Incomplete Data-Set)</td>
</tr>
<tr>
<td>EU</td>
<td>Belgium, Germany, France, UK, Netherlands</td>
</tr>
<tr>
<td>Non-EU</td>
<td>Japan, Austria (‘95), Australia, Switzerland, Spain (‘86), Norway, Poland (‘04), Turkey</td>
</tr>
</tbody>
</table>
Outline of the Presentation

- Introduction
- Theoretical Framework
- Empirical Specification
- Estimation Results
- Summary
<table>
<thead>
<tr>
<th>SITC</th>
<th>shared</th>
<th>importer</th>
<th>exporter</th>
<th>R^2</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Food</td>
<td>-0.13</td>
<td>-0.19</td>
<td>0.27</td>
<td>0.39</td>
<td>102,136</td>
</tr>
<tr>
<td></td>
<td>(-6.20)</td>
<td>(-13.50)</td>
<td>(19.20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Beverages</td>
<td>-1.35</td>
<td>-1.24</td>
<td>-0.21</td>
<td>0.41</td>
<td>12,532</td>
</tr>
<tr>
<td></td>
<td>(-16.33)</td>
<td>(-20.10)</td>
<td>(-3.59)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Crude Mat.</td>
<td>-0.014</td>
<td>-0.026</td>
<td>0.10</td>
<td>0.23</td>
<td>80,824</td>
</tr>
<tr>
<td></td>
<td>(-0.95)</td>
<td>(-2.25)</td>
<td>(8.75)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Fuels</td>
<td>0.36</td>
<td>-0.24</td>
<td>0.43</td>
<td>0.37</td>
<td>16,538</td>
</tr>
<tr>
<td></td>
<td>(7.24)</td>
<td>(-5.55)</td>
<td>(11.88)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Oils, Fats</td>
<td>-0.18</td>
<td>0.066</td>
<td>-0.12</td>
<td>0.36</td>
<td>9,964</td>
</tr>
<tr>
<td></td>
<td>(-1.63)</td>
<td>(1.31)</td>
<td>(-2.85)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Chemicals</td>
<td>0.12</td>
<td>0.19</td>
<td>0.36</td>
<td>0.55</td>
<td>70,096</td>
</tr>
<tr>
<td></td>
<td>(10.75)</td>
<td>(18.36)</td>
<td>(38.31)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Man. by Mat.</td>
<td>0.05</td>
<td>0.096</td>
<td>0.063</td>
<td>0.49</td>
<td>180,146</td>
</tr>
<tr>
<td></td>
<td>(6.72)</td>
<td>(14.07)</td>
<td>(9.18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Machinery</td>
<td>0.15</td>
<td>0.24</td>
<td>0.25</td>
<td>0.61</td>
<td>133,780</td>
</tr>
<tr>
<td></td>
<td>(19.97)</td>
<td>(32.25)</td>
<td>(33.18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Miscellaneous</td>
<td>0.28</td>
<td>0.084</td>
<td>0.38</td>
<td>0.57</td>
<td>106,020</td>
</tr>
<tr>
<td></td>
<td>(27.41)</td>
<td>(10.32)</td>
<td>(49.03)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 not elsewhere classified</td>
<td>(none)</td>
<td>-0.092</td>
<td>0.51</td>
<td>0.25</td>
<td>5,836</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-1.41)</td>
<td>(10.12)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Imports – Evaluated by Industry:

- **Simple** manufacturing industries: country-specific standards reduce imports – *trade barrier effect* dominates

- **Complex** goods: country-specific standards increase imports – *market access effect* dominates
Caveats

• Count-data does not necessarily reflect economic importance

• Strong assumption:
 – Level of protection other than through standards within each 1-digit-industry is the same
 – standards uncorrelated with other trade-barriers (tariffs, subsidies)
Some Country-Comparisons (Imports):

<table>
<thead>
<tr>
<th>Country</th>
<th>Shared</th>
<th>Importer</th>
<th>Exporter</th>
<th>R²</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>0.74</td>
<td>-0.07</td>
<td>0.18</td>
<td>0.34</td>
<td>68,301</td>
</tr>
<tr>
<td></td>
<td>(8.95)</td>
<td>(-4.36)</td>
<td>(14.42)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>0.29</td>
<td>0.34</td>
<td>0.03</td>
<td>0.38</td>
<td>81,080</td>
</tr>
<tr>
<td></td>
<td>(25.75)</td>
<td>(37.86)</td>
<td>(2.78)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>0.14</td>
<td>0.18</td>
<td>0.35</td>
<td>0.40</td>
<td>81,831</td>
</tr>
<tr>
<td></td>
<td>(11.00)</td>
<td>(15.31)</td>
<td>(30.12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td>-0.087</td>
<td>-0.40</td>
<td>0.93</td>
<td>0.21</td>
<td>54,316</td>
</tr>
<tr>
<td></td>
<td>(-4.45)</td>
<td>(-29.35)</td>
<td>(73.99)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>0.25</td>
<td>0.82</td>
<td>0.15</td>
<td>0.22</td>
<td>83,959</td>
</tr>
<tr>
<td></td>
<td>(3.86)</td>
<td>(57.22)</td>
<td>(11.82)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(robust t-statistics in parenthesis)
Examples in Agriculture

• DIN 10091: Boxes for Horticulture, dimensions
• DIN 10262: Oleaginous seeds, determination of impurities
• BBA MB 27/1: Stages of development of cereals, except maize, used for tests, counseling and practice in agriculture
Comment

• Both product- as well as process- standards in agriculture

• Induce additional cost, e.g. for testing

• Provide precise information about conditions / specifications that need to be met for testing → precise Market Access Information
Agriculture: EU as Importer, Shared Standards

Period:
- 80-85
- 86-90
- 91-95

Elasticity:
- Sha EU-EU
- Sha EU-O
Agriculture: EU as Importer, Exporter Standards
Distribution Across Industries

<table>
<thead>
<tr>
<th></th>
<th>All Countries</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80-85</td>
<td>86-90</td>
</tr>
<tr>
<td>shared</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aver.</td>
<td>-0.12</td>
<td>-0.10</td>
</tr>
<tr>
<td>SD</td>
<td>0.85</td>
<td>0.64</td>
</tr>
<tr>
<td>Imp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aver.</td>
<td>-0.11</td>
<td>0.01</td>
</tr>
<tr>
<td>SD</td>
<td>0.66</td>
<td>0.44</td>
</tr>
<tr>
<td>Exp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aver.</td>
<td>0.42</td>
<td>-0.01</td>
</tr>
<tr>
<td>SD</td>
<td>0.63</td>
<td>0.59</td>
</tr>
</tbody>
</table>
Observations

- Overall effect of standards in agriculture seems to decrease. However, this is due to **offsetting directions of effects** for different country-groups.

- **EU standards** seem to grow **more restrictive** over time.

- Important role of **exporter standards**
Interpretation

• As countries integrate, additional benefits of harmonization decrease: the loss of variety effect outweighs the no adaptation cost effect

• As countries integrate, insider-standards (country-specific) gain power while outsider-standards lose power
Outline of the Presentation

- Introduction
- Theoretical Framework
- Empirical Specification
- Estimation Results
- Summary
Summary:

- Standards provide information and harmonization services, can impose adaptation costs across countries and reduce variety. Essential to recognize *trade-offs* between the different forces.

- Some evidence that harmonization (in agriculture) leads to *insider-outsider* distinction.

- Some evidence that *barrier effect of EU standards* increased for outsiders.
Policy Implications

• Country-specific importer standards not always a barrier to trade, harmonization not always beneficial

• Don’t cure symptoms: Issue is market access, not standards – information and variety key

• Food is a sensitive issue. Let the interested parties choose what to harmonize … and don’t forget the consumers 😊